Universität Paderborn - Home deutsch Universität Paderborn
Die Universität der Informationsgesellschaft

Publications

  1. Density-functional theory and the v-representability problem for model strongly correlated electron systems
    A. Schindlmayr and R. W. Godby
    Phys. Rev. B 51, 10427 (1995).
  2. Violation of particle number conservation in the GW approximation
    A. Schindlmayr
    Phys. Rev. B 56, 3528 (1997).
  3. Excitons with anisotropic effective mass
    A. Schindlmayr
    Eur. J. Phys. 18, 374 (1997).
  4. Assessment of the GW approximation using Hubbard chains
    T. J. Pollehn, A. Schindlmayr and R. W. Godby
    J. Phys.: Condens. Matter 10, 1273 (1998).
  5. Systematic vertex corrections through iterative solution of Hedin's equations beyond the GW approximation
    A. Schindlmayr and R. W. Godby
    Phys. Rev. Lett. 80, 1702 (1998).
  6. Spectra and total energies from self-consistent many-body perturbation theory
    A. Schindlmayr, T. J. Pollehn and R. W. Godby
    Phys. Rev. B 58, 12684 (1998).
  7. Universality of the Hohenberg-Kohn functional
    A. Schindlmayr
    Am. J. Phys. 67, 933 (1999).
  8. Decay properties of the one-particle Green function in real space and imaginary time
    A. Schindlmayr
    Phys. Rev. B 62, 12573 (2000).
  9. Exchange-correlation kernels for excited states in solids
    K. Tatarczyk, A. Schindlmayr and M. Scheffler
    Phys. Rev. B 63, 235106 (2001).
  10. Self-consistency and vertex corrections beyond the GW approximation
    A. Schindlmayr
    in Recent Research Developments in Physics, edited by S. G. Pandalai (Transworld Research Network, Trivandrum, 2001), Vol. 2, p. 277.
  11. Diagrammatic self-energy approximations and the total particle number
    A. Schindlmayr, P. García-González and R. W. Godby
    Phys. Rev. B 64, 235106 (2001).
  12. Quasiparticle calculations for point defects on semiconductor surfaces
    M. Hedström, A. Schindlmayr and M. Scheffler
    Phys. Status Solidi B 234, 346 (2002).
  13. Magnetic excitations
    A. Schindlmayr
    in Magnetism goes Nano (Matter and Materials, Vol. 26), edited by S. Blügel, T. Brückel and C. M. Schneider (Forschungszentrum Jülich, 2005), p. D1.1.
  14. Many-body perturbation theory: The GW approximation
    C. Friedrich and A. Schindlmayr
    in Computational Nanoscience: Do It Yourself! (NIC Series, Vol. 31), edited by J. Grotendorst, S. Blügel and D. Marx (John von Neumann Institute for Computing, Jülich, 2006), p. 335.
  15. Time-dependent density-functional theory
    A. Schindlmayr
    in Computational Condensed Matter Physics (Matter and Materials, Vol. 32), edited by S. Blügel, G. Gompper, E. Koch, H. Müller-Krumbhaar, R. Spatschek and R. G. Winkler (Forschungszentrum Jülich, 2006), p. A4.1.
  16. Many-body perturbation theory: The GW approximation
    C. Friedrich and A. Schindlmayr
    in Computational Condensed Matter Physics (Matter and Materials, Vol. 32), edited by S. Blügel, G. Gompper, E. Koch, H. Müller-Krumbhaar, R. Spatschek and R. G. Winkler (Forschungszentrum Jülich, 2006), p. A5.1.
  17. Elimination of the linearization error in GW calculations based on the linearized augmented-plane-wave method
    C. Friedrich, A. Schindlmayr, S. Blügel and T. Kotani
    Phys. Rev. B 74, 045104 (2006).
  18. Quasiparticle corrections to the electronic properties of anion vacancies at GaAs(110) and InP(110)
    M. Hedström, A. Schindlmayr, G. Schwarz and M. Scheffler
    Phys. Rev. Lett. 97, 226401 (2006).
  19. Dielectric anisotropy in the GW space-time method
    C. Freysoldt, P. Eggert, P. Rinke, A. Schindlmayr, R. W. Godby and M. Scheffler
    Comput. Phys. Commun. 176, 1 (2007).
  20. Quasiparticle calculations for point defects at semiconductor surfaces
    A. Schindlmayr and M. Scheffler
    in Theory of Defects in Semiconductors (Topics of Applied Physics, Vol. 104), edited by D. A. Drabold and S. K. Estreicher (Springer, Berlin, Heidelberg, 2007), p. 165.
  21. Ab initio study of the half-metal to metal transition in strained magnetite
    M. Friák, A. Schindlmayr and M. Scheffler
    New J. Phys. 9, 5 (2007).
  22. Time-dependent density-functional theory for extended systems
    S. Botti, A. Schindlmayr, R. Del Sole and L. Reining
    Rep. Prog. Phys. 70, 357 (2007).
  23. Interaction of radiation with matter. Part II: Light and electrons
    A. Schindlmayr
    in Probing the Nanoworld (Matter and Materials, Vol. 34), edited by K. Urban, C. M. Schneider, T. Brückel, S. Blügel, K. Tillmann, W. Schweika, M. Lentzen and L. Baumgarten (Forschungszentrum Jülich, 2007), p. A1.21.
  24. Screening in two dimensions: GW calculations for surfaces and thin films using the repeated-slab approach
    C. Freysoldt, P. Eggert, P. Rinke, A. Schindlmayr and M. Scheffler
    Phys. Rev. B 77, 235428 (2008).
  25. Efficient calculation of the Coulomb matrix and its expansion around k=0 within the FLAPW method
    C. Friedrich, A. Schindlmayr and S. Blügel
    Comput. Phys. Commun. 180, 347 (2009).
  26. Optical conductivity of metals from first principles
    A. Schindlmayr
    AIP Conf. Proc. 1176, 157 (2009).
  27. Measurement of effective electron mass in biaxial tensile strained silicon on insulator
    S. F. Feste, T. Schäpers, D. Buca, Q. T. Zhao, J. Knoch, M. Bouhassoune, A. Schindlmayr and S. Mantl
    Appl. Phys. Lett. 95, 182101 (2009).
  28. Do we know the band gap of lithium niobate?
    C. Thierfelder, S. Sanna, A. Schindlmayr and W. G. Schmidt
    Phys. Status Solidi C 7, 362 (2010).
  29. Electronic structure and effective masses in strained silicon
    M. Bouhassoune and A. Schindlmayr
    Phys. Status Solidi C 7, 460 (2010).
  30. Wannier-function approach to spin excitations in solids
    E. Şaşıoğlu, A. Schindlmayr, C. Friedrich, F. Freimuth and S. Blügel
    Phys. Rev. B 81, 054434 (2010).
  31. Efficient implementation of the GW approximation within the all-electron FLAPW method
    C. Friedrich, S. Blügel and A. Schindlmayr
    Phys. Rev. B 81, 125102 (2010).
  32. First-principles calculation of electronic excitations in solids with SPEX
    A. Schindlmayr, C. Friedrich, E. Şaşıoğlu and S. Blügel
    Z. Phys. Chem. 224, 357 (2010).
  33. First-principles calculation of electronic excitations in solids with SPEX
    A. Schindlmayr, C. Friedrich, E. Şaşıoğlu and S. Blügel
    in Modern and Universal First-Principles Methods for Many-Electron Systems in Chemistry and Physics (Progress in Physical Chemistry, Vol. 3), edited by F. M. Dolg (Oldenbourg, München, 2010), p. 67.
  34. Simulation of the ultrafast optical response of metal slabs
    M. Wand, A. Schindlmayr, T. Meier and J. Förstner
    Phys. Status Solidi B 248, 887 (2011).
  35. Theoretical approach to the ultrafast nonlinear optical response of metal slabs
    M. Wand, A. Schindlmayr, T. Meier and J. Förstner
    in Proceedings of the Conference on Lasers and Electro-Optics (CLEO:2011), OSA Technical Digest (Optical Society of America, 2011), JTuI59.
  36. Hybrid functionals and GW approximation in the FLAPW method
    C. Friedrich, M. Betzinger, M. Schlipf, S. Blügel and A. Schindlmayr
    J. Phys.: Condens. Matter 24, 293201 (2012).
  37. Analytic evaluation of the electronic self-energy in the GW approximation for two electrons on a sphere
    A. Schindlmayr
    Phys. Rev. B 87, 075104 (2013).
  38. Optical response of stoichiometric and congruent lithium niobate from first-principles calculations
    A. Riefer, S. Sanna, A. Schindlmayr and W. G. Schmidt
    Phys. Rev. B 87, 195208 (2013).
  39. HOMO band dispersion of crystalline rubrene: Effects of self-energy corrections within the GW approximation
    S. Yanagisawa, Y. Morikawa and A. Schindlmayr
    Phys. Rev. B 88, 115438 (2013).
  40. Lithium niobate dielectric function and second-order polarizability tensor from massively parallel ab initio calculations
    A. Riefer, M. Rohrmüller, M. Landmann, S. Sanna, E. Rauls, N. J. Vollmers, R. Hölscher, M. Witte, Y. Li, U. Gerstmann, A. Schindlmayr and W. G. Schmidt
    in High Performance Computing in Science and Engineering '13 (Transactions of the High Performance Computing Center, Stuttgart), edited by W. E. Nagel, D. H. Kröner and M. M. Resch (Springer, Cham, 2013), p. 93.
  41. Many-body perturbation theory: The GW approximation
    C. Friedrich and A. Schindlmayr
    in Computing Solids: Models, ab initio Methods and Supercomputing (Key Technologies, Vol. 74), edited by S. Blügel, N. Helbig, V. Meden and D. Wortmann (Forschungszentrum Jülich, 2014), p. A4.1.
  42. Theoretical investigation of the band structure of picene single crystals within the GW approximation
    S. Yanagisawa, Y. Morikawa and A. Schindlmayr
    Jpn. J. Appl. Phys. 53, 05FY02 (2014).
  43. The GW approximation for the electronic self-energy
    A. Schindlmayr
    in Many-Electron Approaches in Physics, Chemistry and Mathematics (Mathematical Physics Studies, Vol. 29), edited by V. Bach and L. Delle Site (Springer, Cham, 2014), p. 343.
  44. Spin excitations in solids from many-body perturbation theory
    C. Friedrich, E. Şaşıoğlu, M. Müller, A. Schindlmayr and S. Blügel
    in First-Principles Approaches to Spectroscopic Properties of Complex Materials (Topics in Current Chemistry, Vol. 347), edited by C. Di Valentin, S. Botti and M. Cococcioni (Springer, Berlin, Heidelberg, 2014), p. 259.
  45. Ab initio study of strain effects on the quasiparticle bands and effective masses in silicon
    M. Bouhassoune and A. Schindlmayr
    Adv. Condens. Matter Phys. 2015, 453125 (2015).

Index A–Z | Impressum | Webmaster | Last modified: 11.02.2015