Solar nanocomposites with complementary charge extraction pathways for electrons and holes: Si embedded in ZnS

S. Wippermann, M. Vörös, F. Gygi, A. Gali, G. Zimanyi, G. Galli
Nanocomposites based on Si nanocrystals embedded in a charge transport matrix are promising candidates for light absorbers in quantum dot based 3rd generation photovoltaics architectures.

\[d = 3.3 \text{nm} \] Si nanocrystals in SiO$_2$

[M. Zacharias et al., Appl. Phys. Lett. 80, 661 (2002)]
Nanocomposites based on Si nanocrystals embedded in a charge transport matrix are promising candidates for light absorbers in quantum dot based 3rd generation photovoltaics architectures.

Key problems:
- Ensure efficient charge transport and low recombination rates
- Understand interplay between interface structure, quantum-confinement, defects

[M. Zacharias et al., Appl. Phys. Lett. 80, 661 (2002)]
Search for materials to harvest light

Nanocomposites based on **Si nanocrystals embedded in a charge transport matrix** are promising candidates for light absorbers in quantum dot based 3rd generation photovoltaics architectures.

Key problems:
- Ensure efficient charge transport and low recombination rates
- Understand interplay between interface structure, quantum-confinement, defects

Si nanocrystals in ZnS:
- ZnS is earth-abundant, non-toxic and features a favourable band-alignment with Si at least for planar heterointerfaces
- Investigate Si-ZnS nanocomposites from *first principles*

[M. Zacharias et al., Appl. Phys. Lett. 80, 661 (2002)]
Embedding Si nanocrystals in a-ZnS

Create structural models for a-ZnS embedded Si\textsubscript{35}, Si\textsubscript{66}, Si\textsubscript{123}, Si\textsubscript{172} nanoparticles (NPs): replace spherical region (1.1 - 1.9 nm) in 4x4x4 ZnS unit cell and amorphize ZnS matrix using \textit{ab initio} molecular dynamics (MD).

DFT-LDA (Qbox) \(E_C = 80\) Ry, \(\tau = 2\) fs, \(T = 2400\) K, Si atoms free to move for \(T < 600\) K, 10-20 ps MD.
Embedding Si nanocrystals in a-ZnS

Create structural models for a-ZnS embedded Si_{35}, Si_{66}, Si_{123}, Si_{172} nanoparticles (NPs): replace spherical region (1.1 - 1.9 nm) in 4x4x4 ZnS unit cell and amorphize ZnS matrix using ab initio molecular dynamics (MD)

DFT-LDA (Qbox) $E_C = 80$ Ry, $\tau = 2$ fs, $T = 2400$ K, Si atoms free to move for $T < 600$ K, 10-20 ps MD

Different starting geometries, equilibration & cooling times lead to very similar structures

Formation of sulfur-shell on Si-NP surface observed

=> Examine interface structure
Sulfur shell formation introduces new mid-gap states

3-fold coordinated interfacial sulfur: achieves noble gas state with 1 S-Si, 2 S-Zn bonds and 1 lone pair
3-fold coordinated interfacial sulfur: achieves noble gas state with 1 S-Si, 2 S-Zn bonds and 1 lone pair.

Lone pairs of 3-fold coordinated sulfur at NP-matrix interface introduce new occupied mid-gap states, HOMO and near-HOMO states involve lone pairs.
Sulfur shell formation introduces new mid-gap states

3-fold coordinated interfacial sulfur: achieves noble gas state with 1 S-Si, 2 S-Zn bonds and 1 lone pair

Lone pairs of 3-fold coordinated sulfur at NP-matrix interface introduce new occupied mid-gap states, HOMO and near-HOMO states involve lone pairs

=> pronounced gap-reduction of embedded NPs

![Graph showing gap-reduction of embedded NPs](image)
Si nanoparticles (NPs) in SiO$_2$: *type I junction*

- Si NPs embedded in SiO$_2$ form a type I junction with their silica host.
- Valence and conduction band edges localized inside Si NP \Rightarrow no charge transport.
- NP LUMO may be pushed above SiO$_2$ CBM by compressive strain [T. Li, F. Gygi, G. Galli, PRL 2011].
Si nanoparticles (NPs) in ZnS: type II junction

Si NPs in ZnS form a type II junction at equilibrium density

Charge-separated transport channels for electrons and holes may facilitate charge extraction and suppress recombination

Hole transport through host matrix, highly desirable for solar cells

valence band edge

conduction band edge

ZnS CBM
Si NP LUMO
ZnS VBM
Si NP HOMO
Si nanoparticles in ZnS: band alignment

-
 - Formation of type II interface between Si NP and a-ZnS matrix, if, and only if, sulfur content is above a certain threshold.
 - DFT-LDA band offsets reliable?
 => calculate band offsets in GW approximation.

- Calculate band edge energies as a function of the radial distance from the center of the NP.
 GW for large systems

Calculation, storage & inversion of dielectric matrix ε is major computational bottleneck \Rightarrow spectral representation of ε (RPA)

$$\tilde{\varepsilon} = \sum_{i=1}^{N} \tilde{v}_{i} \lambda_{i} \tilde{v}_{i}^{H} = \sum_{i=1}^{N} \tilde{v}_{i} (\lambda_{i} - 1) \tilde{v}_{i}^{H} + I$$

GW for large systems

Calculation, storage & inversion of dielectric matrix ε is major computational bottleneck \Rightarrow spectral representation of ε (RPA)

$$\tilde{\varepsilon} = \sum_{i=1}^{N} \tilde{v}_i \lambda_i \tilde{v}_i^H = \sum_{i=1}^{N} \tilde{v}_i (\lambda_i - 1) \tilde{v}_i^H + I$$

Calculating eigenvectors/values does NOT require explicit knowledge of the matrix itself; knowing the action of ε on an arbitrary vector is sufficient

In linear response: $(\varepsilon - I) \Delta V_{SCF} = -v_c \Delta n$

Charge density response Δn to perturbation of self-consistent field ΔV_{SCF} can be evaluated from density functional perturbation theory

GW for large systems

Calculation, storage & inversion of dielectric matrix ε is major computational bottleneck \Rightarrow spectral representation of ε (RPA)

$$\tilde{\varepsilon} = \sum_{i=1}^{N} \tilde{v}_i \lambda_i \tilde{v}_i^H = \sum_{i=1}^{N} \tilde{v}_i (\lambda_i - 1) \tilde{v}_i^H + I$$

Calculating eigenvectors/-values does NOT require explicit knowledge of the matrix itself; knowing the action of ε on an arbitrary vector is sufficient

In linear response: $(\varepsilon - I) \Delta V_{SCF} = -v_c \Delta n$

Charge density response Δn to perturbation of self-consistent field ΔV_{SCF} can be evaluated from density functional perturbation theory

Orthogonal iteration procedure to obtain eigenvector/-value pairs, using ΔV_{SCF} as trial potentials

In RPA fast monotonous decay of dielectric eigenvalue spectrum

Single parameter N_{eig} to control numerical accuracy

No summation over empty states, no inversion

GW for large systems

Calculation, storage & inversion of dielectric matrix ε is major computational bottleneck \Rightarrow spectral representation of ε (RPA)

$$\tilde{\varepsilon} = \sum_{i=1}^{N} \tilde{\nu}_i \lambda_i \tilde{\nu}_i^H = \sum_{i=1}^{N} \tilde{\nu}_i (\lambda_i - 1) \tilde{\nu}_i^H + I$$

Calculating eigenvectors/-values does NOT require explicit knowledge of the matrix itself; knowing the action of ε on an arbitrary vector is sufficient.

In linear response: $(\varepsilon - I) \Delta V_{SCF} = -v_c \Delta n$

Charge density response Δn to perturbation of self-consistent field ΔV_{SCF} can be evaluated from density functional perturbation theory.

Orthogonal iteration procedure to obtain eigenvector/-value pairs, using ΔV_{SCF} as trial potentials.

In RPA fast monotonous decay of dielectric eigenvalue spectrum.

Single parameter N_{eig} to control numerical accuracy.

No summation over empty states, no inversion.

D. Rocca, H.-V. Nguyen, T.A. Pham (UCD)
Band alignment from many body perturbation theory (GW)

GW calculations possible for a system as large as Si$_{35}$Zn$_{81}$S$_{100}$
Band alignment from many body perturbation theory (GW)

GW calculations possible for a system as large as Si$_{35}$Zn$_{81}$S$_{100}$

Many body corrections in GW approximation introduce mainly a rigid shift

\Rightarrow confirms type II alignment
Summary

Investigated 1.1 - 1.9 nm Si nanocrystals embedded in a-ZnS using ab initio MD and quasiparticle calculations in GW approximation.

ZnS-embedded Si nanocrystals form a type II junction with the ZnS host in sulfur-rich conditions.

Band edges localized in different portions of nanocomposite => charge-separated transport channels for electrons and holes.

Solar Nanocomposites with Complementary Charge Extraction Pathways for Electrons and Holes: Si Embedded in ZnS

Stefan Wippermann,1,2,3 Márton Vörös,2,3 Adam Gali,4,5 Francois Gygi,6 Gergely T. Zimanyi,3 and Giulia Galli7

1Interface Chemistry and Surface Engineering Department, Max-Planck-Institute for Iron Research GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
2Chemistry Department, University of California, Davis, California 95616, USA
3Physics Department, University of California, Davis, California 95616, USA
4Department of Atomic Physics, Budapest University of Technology and Economics, Budafoki út 8., H-1111 Budapest, Hungary
5Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary
6Department of Computer Science, University of California, Davis, California 95616, USA
7Institute for Molecular Engineering, University of Chicago, Illinois 60637, USA

(Received 9 October 2013; published 11 March 2014)
Acknowledgements

Giulia Galli and her group at UChicago, especially Marton Vörös and Tuan Anh Pham

Francois Gygi (UC Davis), Gergely Zimanyi (UC Davis), Adam Gali (Budapest Univ.), Dario Rocca (Univ. Lorraine)
Band alignments of semiconductors

Band alignments of semiconductors

Band alignments of semiconductors

Band alignments of semiconductors

Band alignments of semiconductors