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1 Fundamental terms

Thermal physics, generally speaking, is the study of the statistical nature of
physical systems from an energetic perspective, it is typically divided into ther-
modynamics and statistical mechanics. It deals with the macroscopic properties
(and their mutual relations) of macroscopic systems, containing typically around
1023 particles.

Macr. systems
↓

Thermal physics
ւ ց

Thermodynamics Statistical mechanics

- phenomenological - microscopic derivations
parameters of materials parameters

- independent of - statistical interpretation
microscopic model of system properties

- very general conclusions
and relations

Thermodynamic system:
Above we have used the term system. The system is a very important concept
in thermodynamics. Everything in the universe except the system is known as
surroundings. A system is the region of the universe under study. A system
is separated from the remainder of the universe by a boundary which may be
imaginary or not, but which by convention delimits a finite volume. The possi-
ble exchanges of work, heat, or matter between the system and the surroundings
take place across this boundary and are used to classify the specific system un-
der study.

SYSTEM

SURROUNDINGS

BOUNDARY

work

heat

matter
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exchange of system classified as
heat, work, and matter open
heat and work closed
heat diathermic
work adiabatic
– isolated

Thermodynamic state:
A thermodynamic state is the macroscopic condition of a thermodynamic system
as described by its particular thermodynamic parameters at a specific time. The
state of any thermodynamic system can be described by a set of thermodynamic
parameters, such as temperature, pressure, density, composition, independently
of its surroundings or history.

Thermodynamic parameters:
The parameters required to unambiguously specify the state of the system. They
depend on the characteristics of the system and need to be measurably.

Examples:

1. determined by surroundings:

− volume

− electric or magnetic fields

2. determined by internal interactions:

− pressure, density, temperature

− internal energy, polarization, magnetization

There is a minimal ensemble of parameters that uniquely specify the state, and
all other parameters can be derived from these. The parameters of this minimal
ensemble are independent.

The number of independent parameters equals the number of macroscopic de-
grees of freedom of the system.

Intensive/extensive thermodynamic parameters:
An intensive property (also called a bulk property), is a physical property of a
system that does not depend on the system size or the amount of material in
the system. By contrast, an extensive property of a system does depend on the
system size or the amount of material in the system.

Examples for intensive parameters:
- temperature (T)
- pressure (p)
- chemical potential (µ)
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Examples for extensive parameters:
- mass
- volume (V)
- internal energy (U)

Basic postulate of thermodynamics (based on experience):
As time passes in an isolated system, internal differences in the system tend
to even out (e.g., pressures and temperatures tend to equalize, as do density
differences). A system in which all equalizing processes have gone practically
to completion, is considered to be in a state of thermodynamic equilibrium. A
system that is in equilibrium experiences no changes when it is isolated from its
surroundings.

Systems in thermodynamic equilibrium are unambiguously characterized by a
smaller number of thermodynamic parameters than systems that are not equi-
librated.
Example:

T T Tt --> 8

1 2

The thermodynamic state changes by reversible or irreversible processes.

Reversible/irreversible processes:
A reversible process is a process that, after it has taken place, can be reversed
and causes no change in either the system or its surroundings. In thermody-
namic terms, a process ”taking place” would refer to its transition from its initial
state to its final state. A process that is not reversible is termed irreversible.
At the same point in an irreversible cycle, the system will be in the same state,
but the surroundings are permanently changed after each cycle.

Example:
The process z1 → z2 is called irreversible, if the process z2 → z3 = z1 leads to
changes in the surroundings, otherwise it is reversible.

t ,Z

t ,Z  = Z

t ,Z
1      1

2       2

3      3             1

A reversible process, or reversible cycle if the process is cyclic, is a process
that can be ”reversed” by means of infinitesimal changes in some property of
the system without loss or dissipation of energy. Due to these infinitesimal
changes, the system is at rest throughout the entire process. Since it would
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take an infinite amount of time for the process to finish, perfectly reversible pro-
cesses are impossible. However, if the system undergoing the changes responds
much faster than the applied change, the deviation from reversibility may be
negligible.
In some cases, it is important to distinguish between reversible and quasistatic
processes.

Quasistatic processes:
Quasistatic processes happen infinitely slowly. In practice, such processes can be
approximated by performing them ”very slowly”. The criterion for very slowly
is that the change of the macroscopic state is much slower than the microscopic
time scale, e.g., speed of piston movement vs. velocity of gas particles. The in-
sures that the microscopic objects can adapt adiabatically, i.e., instantaneously.

Reversible processes are always quasistatic, but the converse is not always true.
For example, an infinitesimal compression of a gas in a cylinder where there
exists friction between the piston and the cylinder is a quasistatic, but not re-
versible process. Although the system has been driven from its equilibrium state
by only an infinitesimal amount, heat has been irreversibly lost due to friction,
and cannot be recovered by simply moving the piston infinitesimally in the op-
posite direction.

Thermodynamic phase:
A thermodynamic phase is an open, connected region in the space of thermo-
dynamic states that is physically and chemically homogenous where the ther-
modynamical parameters are constant.
Example:
Constant pressure and temperature in the liquid and gaseous phase of water.

2 Zeroth law of thermodynamics

In many ways, this law is more fundamental than any of the other laws of ther-
modynamics. However, the need to state it explicitly as a law was not perceived
until the first third of the 20th century, long after the first three laws were al-
ready widely in use and named as such, hence the zero numbering.

Zeroth law of thermodynamics , introduce temperature axiomatically, proves
that we can define a temperature function, or more informally, that we can
’construct a thermometer’.

For any thermodynamic system there exists an intensive parameter,
called temperature. Its equality is necessary and sufficient for the
thermodynamical equilibrium between two systems or two parts of
the same system.

=⇒ If two thermodynamic systems are in thermal equilibrium with a third,
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they are also in thermal equilibrium with each other.

=⇒ defines a measuring specification for the temperature:

2 systems S, S’ characterized by parameters A, Bi with i=1,2,. . .

temperature itself is a thermodynamic parameter, i.e.,:

T̃ = f(A, Bi)

A

B isothermal line (or surface),
i.e., T = f(A,B  ) = const.i

~i

thermodynamic equilibrium between S and S’ ⇒ T̃ ′ = T̃ = f(A, Bi)

S≪S’ (i.e., S’ doesn’t change upon measurement, equilibrium is soon estab-
lished)

keep Bi fixed (=B0i)→ T̃ (A)

A

B

~

i

T
~
T

~
T

B i0

AA A1

1

2

2 3

3

A represents a thermometric parameter

• define arbitrarily linear scale, i.e., T̃ (A) = cA.

• by convention the tripel point of water is used as a temperature-fixed
point, assign arbitrarily temperature of 273.16 K

T̃tripel = 273.16K = cAtripel =⇒ T̃ = 273.16K
A

Atripel
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Examples:

A thermometer
V constant-pressure gas thermometer
p constant-volume gas thermometer
length mercury thermometer
electric resistance electrical resistance thermometer
voltage thermocouple

Data measured with different thermometers differ. The smallest differences
occur with gas thermometers operated at low pressure. This is based on the
fact that all gases become ideal in the limit of zero pressure. Therefore, we can
define the ideal gas temperature scale:

T=273.16 K · limptripel→0(
p

ptripel
)|V =constant

(later: equals the absolute (or thermodynamic) temperature)

3 First law of thermodynamics

3.1 Conservation of energy

The first law of thermodynamics is an expression of the more universal physical
law of the conservation of energy. Succinctly, the first law of thermodynamics
states:

Every thermodynamic system is characterized by an extensive prop-
erty called internal energy U. Its increase is equal to the amount of
energy added by heating the system (δQ), plus the amount gained as
a result of the work (δW ) done by the surroundings on the system.

dU = δQ + δW

Isolated systems: δQ = δW = 0⇒ U is constant, dU = 0

Work and heat are processes which add or subtract energy rather than ther-
modynamic parameters as the internal energy U. The latter is a particular form
of energy associated with the system. The infinitesimal heat and work are de-
noted by δQ and δW rather than dQ and dW because, in mathematical terms,
they are not exact differentials. The integral of an inexact differential depends
upon the particular ”path”, i.e., thermodynamic process, taken through the
space of thermodynamic parameters while the integral of an exact differential
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depends only upon the initial and final states. If the initial and final states are
the same, then the integral of an inexact differential may or may not be zero,
but the integral of an exact differential will always be zero.

δQ > 0⇒ the system heat is heated

δW > 0⇒ work is done on the system

Formulation equivalent to the 1st law of thermodynamics:
It is impossible to construct a perpetual motion machine of the first

kind. By this we mean a device whose parts are not only in per-
manent motion, but provides work without input of external energy
(e.g. heat) and without change of the physical or chemical status of
its parts.

Examples for work term:

mechanical work: δW = −p dV
magnetic work: δW = ~Hd ~M
electric work: δW = ~Ed~P

generally it holds:

δW = −
∑

i

yi dXi

where Xi=extensive and yi=intensive properties.

Besides the Xi at least the temperature belongs to the minimal ensemble of
thermodynamic parameters ⇒ δW no exact differential, since it does not con-
tain a temperature differential.

Cyclic processes:

Z  = Z

Z

X

Y

3             1

2 Z 2

Z  = Z3             1
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3.2 pVT systems

Systems that are completely determined by pressure (p), volume (V) and tem-
perature (T) are called pVT systems.

Experience tells us that only two of these parameters are needed to form a
minimal ensemble of thermodynamic parameters. The third parameter is de-
termined via the thermal equation of state (TEOS):

f(p, V, T ) = 0.

Consequently, the internal energy must be given as a function of two ther-
modynamic parameters. If these are chosen to be V and T , this function is
known as caloric equation of state (CEOS):

U = U(V, T )

where δW = −p dV⇒1st law dU = δQ− p dV

heat capacity, defined via δQ = C dT

C depends on the kind of process
Cv → δQ the system is heated with its volume kept constant
Cp → δQ the system is heated at constant pressure

Determination of Cv and Cp from TEOS and CEOS:

1st law:

C dT = dU+p dV and CEOS: U=U(V,T)

C dT = (∂U
∂T )V dT +( ∂U

∂V )T dV +p dV = (∂U
∂T )V dT +

[
( ∂U

∂V )T + p
]
dV (*)

now consider: dV=0

⇒ Cv =

(
∂U

∂T

)

V

TEOS given as: V=V(p,T)

dV = (∂V
∂p )T dp +(∂V

∂T )p dT

inserted in (*) yields:

C dT = (∂U
∂T )V dT +

[
( ∂U

∂V )T + p
] [

(∂V
∂P )T dp +(∂V

∂T )p dT
]

=
{
(∂U

∂T )V +
[
( ∂U

∂V )T + p
]
(∂V

∂T )p

}
dT+

[
( ∂U

∂V )T + p
]
(∂V

∂p ) dp
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now consider: dp=0 ⇒ Cp = (
∂U

∂T
)V

︸ ︷︷ ︸

Cv

+
[
( ∂U

∂V ) + p
]
(∂V

∂T )p

Cp = Cv +

[(
∂U

∂V

)

T

+ p

] (
∂V

∂T

)

p

difference Cp − Cv completely determined by CEOS & TEOS!

Cv, Cp are completely determined by thermodynamic parameters and there-
fore themselves thermodynamic parameters

Important processes:

1. isothermal process: T = const.

2. isochoric process: V = const.

3. isobaric process: p = const.

4. polytropic proess: C = constant (in particular: C = 0 → thermally isolated
process, adiabatic process, δQ = 0 ).

discuss now polytropic process:

C dT = (∂U
∂T )V dT +

[
( ∂U

∂V )T + p
]
dV (*)

Cv = (∂U
∂T )V (**)

Cp − Cv =
[
( ∂U

∂V )T + p
]
(∂V

∂T )p (***)

(*/**): (C − Cv) dT =

[

(
∂U

∂V
)T + p

]

︸ ︷︷ ︸

(Cp−Cv)( ∂V
∂T

)−1
p

dV(***)

⇒ (C − Cv) dT = (Cp − Cv)( ∂T
∂V )p dV

Polytropic equation for T(V):

dT

dV
=

Cp − Cv

C − Cv

(
∂T

∂V

)

p

(differential equation that allows for determining T(V), if ( ∂T
∂V )p is expressed

via TEOS)

the differential equations for p(V) and p(T) can be obtained as well:

start from TEOS that ensures dT = ( ∂T
∂V )p dV +(∂T

∂p )V dp
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insert in polytropic equation for T(V):

(C − Cv)
[

( ∂T
∂V )p dV +(∂T

∂p )V dp
]

= (Cp − Cv)( ∂T
∂V )p dV

(C − Cv)(∂T
∂p )V dp = (Cp − Cv + Cv − C)( ∂T

∂V )p dV

(∂T
∂p )V

dp
dV = −

Cp − C

Cv − C
︸ ︷︷ ︸

δ

( ∂T
∂V )p

introduce here the polytropic index δ

so that polytropic equation for p(V):

(
∂T

∂p

)

V

dp

dV
= −δ

(
∂T

∂V

)

p

eliminate partial derivatives using TEOS

in particular: adiabatic (thermally isolated) process δ =
Cp

Cv

now analyze the dependence C = C(δ) =
δCv−Cp

δ−1 (Cp > Cv)

in case δ = 1⇒ C = δQ
dT →∞ (isothermal process , dT=0)

= 1

= C  /Cp v

   C  /Cp v

     C/C
v

isothermal process

adiabatic 

process

}

C<0

dependence c(  )

1

C negative between the isothermal and adiabatic processes, i.e., heating the
system results in lowering its temperature! This does not violate the 1st law
(system does work on the surroundings), but, as we will prove later, is no stable
regime.
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3.3 Ideal gas as example for a pVT system

TEOS: pV = NkT ideal gas law, Boyle-Mariotte law

CEOS: U = CvT + const. Cv = const.; Gay-Lussac law

Earlier (3.2) Cp − Cv = [

(
∂U

∂V

)

T
︸ ︷︷ ︸

= 0 CEOS

+p]

(
∂V

∂T

)

p
︸ ︷︷ ︸

= Nk
p

TEOS

⇒ Cp − Cv = Nk

i.e, not only Cv but also Cp constant

specific heat capacity:

c̄v = Cv

N ; c̄p =
Cp

N

c̄p − c̄v = k→ Boltzmann’s constant

mikroscopic interpretation:

c̄v = 1
2fk; f = number of microscopic degrees of freedom

f=3: monatomic gas

f=5: diatomic gas (+2 rotation included)

f=7: diatomic gas (+kinetic and potential energy of vibrations)

Cv, Cp are const., i.e., for C = const. (polytropic process) is δ constant as
well

=⇒ this allows for integrating the polytropic equation for p(V):

(
∂T

∂p
)V

︸ ︷︷ ︸

= V
Nk

TEOS

dp = −δ (
∂T

∂V
)p

︸ ︷︷ ︸

= p
Nk

TEOS

dV

⇒ V dp = −δp dV

dp
p = −δ dV

V
lnp = −δ lnV +const.
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⇒ pV δ = const. = p0V
δ
0

from pV ∼ T (TEOS) it follows pV V δ−1 ∼ TV δ−1 = const.

and pV δ ∼ p(T
p )δ =const., respectively

3.4 Work done by an ideal gas during polytropic process

W12 = −

∫ 2

1

p dV = − const.

∫ V2

V1

dV

V δ
=

︸ ︷︷ ︸

becausepV δ=const.=p1V δ
1 =p2V δ

2 (∗)

= − const. 1
1−δ (V 1−δ

2 − V 1−δ
1 ) =(∗)= − 1

1−δ (p2V
δ
2 V 1−δ

2 − p1V
δ
1 V 1−δ

1 ) =

−
1

1− δ
︸ ︷︷ ︸

− 1

1−
Cp−C

Cv−C

(p2V2
︸︷︷︸

NkT2

− p1V1
︸︷︷︸

NkT1

) = (Cv − C)(T2 − T1)

using above that (1−
Cp−C
Cv−C )−1 = Cv−C

Cp−Cv
= Cv−C

Nk

W12 = (Cv − C)(T2 − T1)

in particular for adiabatic process, i.e., C=0: W12 = Cv(T2 − T1) = U2 − U1

⇒ adiabatic compression increases temperature: W12 > 0→ T2 > T1

compare with isothermal process:

W12 = −
∫ 2

1
p dV = −NkT

∫ 2

1
dV
V = NkT ln(V1

V2
) = (Cp − Cv)T ln(V1

V2
)

isothermal compression (V1 > V2) requires to do work on the system (W12 > 0),
for isothermal process of pVT system it holds (1st law):

δQ = −δW + dU = −δW + ( ∂U
∂V )T dV

ideal gas CEOS: (∂U
∂V )T = 0

δQ = −δW

That mean the work done on the system during the isothermal compression
(expansion) is converted into heat that is transferred to (gained from) the sur-
roundings.
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3.5 Gay-Lussac’s experiment

V
2T V1 1

T2 V + V1 2

remove

separation

no work done, not heat transferred, i.e., δQ = δW = 0⇒ dU = 0

U(T1, V1) = U(T2, V1 + V2)

exp. finding: T1 = T2 = T ; U(T, V1) = U(T, V1 + V2)
holds for any volums V1, V2.

=⇒ The internal energy does not depend on the volume; (∂U
∂V )T = 0 (CEOS)

4 Second law of thermodynamics

4.1 Carnot cycle

Every thermodynamic system exists in a particular state. A thermodynamic
cycle occurs when a system is taken through a series of different states, and fi-
nally returned to its initial state. In the process of going through this cycle, the
system may perform work on its surroundings, thereby acting as a heat engine.

A heat engine acts by transferring energy from a warm region to a cool region of
space and, in the process, converting some of that energy to mechanical work.
The cycle may also be reversed. The system may be worked upon by an external
force, and in the process, it can transfer thermal energy from a cooler system
to a warmer one, thereby acting as a heat pump rather than a heat engine.

In thermodynamics a heat reservoir is considered as a constant temperature
source. The temperature of the reservoir does not change irrespective of whether
heat is added or extracted to or from it.
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The Carnot cycle operates between two heat reservoirs of different temperatures
(T1 >T2) and consists of four steps.

T

T  < T

|Q  |

|Q  |

|W|

1

1

1

2

2

• a – Reversible isothermal expansion at T=T1

• b – Reversible adiabatic expansion T1 → T2

• c – Reversible isothermal compression at T=T2

• d – Reversible adiabatic compression T2 → T1

reversible cyle; Choice of substance: (to begin with) ideal gas

T

T  

|Q  |

|Q  |

1

1

2

2

p

V

1

2

3

4

a

b

c

d
|W|

• a – W1 = −NkT1 ln(V2

V1
) (cf. 3.4)

U = U(T )⇒ dU = 0⇒ Q1 + W1 = 0

• b – W2 = −Cv(T1 − T2) (cf. 3.4)
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• c – W3 = NkT2 ln(V3

V4
)

Q2 + W3 = 0

• d – W4 = Cv(T1 − T2)

total work:

W = W1 + W2 + W3 + W4 = W1 + W3 = −NkT1 ln(V2

V1
) + NkT2 ln(V3

V4
)

using polytropic equation from (3.3) it holds

T1V
δ−1
1 = T2V

δ−1
4 ; 4→1

T1V
δ−1
2 = T2V

δ−1
3 ; 2→ 3

that leads to

V2

V1
= V3

V4
⇒W = −Nk(T1 − T2) ln(V2

V1
)

that is for T1 > T2 it holds W< 0, i.e, during Carnot cycle system does work
-W=|W|
Q1 = −W1 = NkT1 ln(V2

V1
)

efficiency ηc = −
W

Q1
=

T1 − T2

T1
= 1−

T2

T1

remarks:

• the smaller T2

T1
the larger is ηc, i.e., ηc increases with temperature difference

• T1 = T2 ⇒ ηc = 0, no work done

• no complete conversion of heat in work

• Carnot cycle reversible, heat pump rather than heat engine

4.2 Nonexistence of perpetual motion machine of the sec-

ond kind

1st law of thermodynamics states that any energy conversion is possibe, e.g.,
complete conversion of heat in work during cyclic process

∆U =
∮

dU = 0 = ∆Q + ∆W ⇒ ∆Q = ∆W .

Carnot cycle shows that work can only be done if at least two heat reservoirs
of different temperatures are involved. The experience shows that this does not
only hold for the Carnot cycle.
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2nd law of thermodynamics (Planck’s version):
It is impossible to construct a perpetual motion machine of the second
kind, i.e., a machine that does nothing else than converting thermal
energy into mechanical work.

two important conclusions:

1. All reversible cycles that operate between 2 heat reservoirs which do work
by extracting heat from one reservoir at T1 > T2 and (partially) transfer this
heat to the reservoir at T2 < T1 have the efficiency: η = ηc = 1− T2

T1
.

proof: indirect, i.e., assume ∃ machine with ηM > ηc

T

T  < T

|Q  |

|Q  |

|W|

1

1

1

2

2

|Q  |2

|Q  |
1

‚

|W |
‚

M C

M ... !ctious machine
C ... Carnot cycle acting as heat pump

obvious from the figure: taken together both machines do work W’ by ex-
tracting heat from reservoir 1, i.e., contradiction to the 2nd law of thermo-
dynamics, i.e, η = ηM = ηc

2. Any irreversible cycle between two heat reservoirs has
the efficiency η < ηc = 1− T2

T1

proof: indirect

a) assume η > ηc ⇒ see above, contradiction to 2nd law

b) assume η = ηc

combination with Carnot cycle results in a machine that does not lead to any
changes in the surroundings, contradiction to the statement of irreversibility
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conclusion: η 6 ηc = 1− T2

T1

η = −
W

Q1
=

Q1 + Q2

Q1
= 1 +

Q2

Q1

Q2

Q1
6 −

T2

T1
⇒

Q1

T1
+

Q2

T2
6 0

in particular cycle reversible:

Q1

T1
+ Q2

T2
= 0 (Clausius equality)

Generalization:
For any reversible thermodynamic cycle it holds

∮ δQ
T = 0

(Clausius theorem)

proof:

First we have to prove the lemma: ”any reversible process can be replaced
by a combination of reversible isothermal and adiabatic processes”.

Consider a reversible process a-b. A series of isothermal and adiabatic processes
can replace this process if the heat and work interaction in those processes is
the same as that in the process a-b. Let this process be replaced by the pro-
cess a-c-d-b, where a-c and d-b are reversible adiabatic processes, while c-d is a
reversible isothermal process.

The isothermal line is chosen such that the area a-e-c is the same as the
area b-e-d. Now, since the area under the p-V diagram is the work done for a
reversible process, we have, the total work done in the cycle a-c-d-b-a is zero.

Applying the first law, we have, the total heat transferred is also zero as the
process is a cycle.

Since a-c and d-b are adiabatic processes, the heat transferred in process c-d
is the same as that in the process a-b.

Now applying first law between the states a and b along a-b and a-c-d-b, we
have, the work done is the same.
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Thus the heat and work in the process a-b and a-c-d-b are the same and
any reversible process a-b can be replaced with a combination of isothermal and
adiabatic processes. A corollary of this theorem is that any reversible cycle can
be replaced by a series of Carnot cycles.

This lemma is now applied to the arbitrary reversible cycle below.

p

V

arbitrary cycle

adiabatic processes

isothermal 
processes

Every small segment (such as shown in gray) corresponds to a Carnot cycle

For Carnot cycle the Clausius equality holds; the heats transferred within the
cycle cancel because the heat delivered by one cycle is captured by the cycle
below.

What remains are the contributions from the isothermal processes at the bound-
ary of the cycle.

∑

n
δQn

Tn
= 0→n→∞

∮
δQ
T = 0

4.3 Entropy
∮

δQ
T = 0→ δQ

T exact differential

There exists a thermodynamic parameter called entropy (S) the exact
differential of which is given by dS = δQrev

T , where δQrev corresponds
to the reversibly transferred heat at the temperature T.

consider cycle between 2 states with the same temperature T

Z1 → Z2: extraction of δQ from heat reservoir (not necessarily reversible)

Z2 → Z1 : transfer of δQrev to the heat reservoir
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with T1 = T2 = T and Q1 = δQ > 0 and Q2 = −δQrev < 0

it holds Q1

T1
+ Q2

T2
= δQ

T −
δQrev

T
︸ ︷︷ ︸

=dS

6 0

dS >
δQ

T

with :=reversible heat exchange and >: irreversible heat exchange

in particular for closed systems: δQ = 0→ dS > 0
i.e., the entropy of an isolated system cannot decrease

2nd law of thermodynamics (Sommerfeld’s version):
Any thermodynamic system is characterized by an extensive prop-
erty S, called entropy. Its change during reversible processes is given
by the heat exchange δQ divided by T (ideal gas temperature). Ir-
reversible processes lead to an entropy production within the system.

in short: dS = dSe + dSi

dSe = δQ
T ; dSi > 0

isolated systems: dSe = δQ
T = 0→ dS = dSi > 0

As long as processes occur spontaneously within the isolated systems, entropy
is being produced. The entropy production stops if the equilibrium is reached.
Then the entropy has reached its maximum.

2nd law characterizes the direction of spontaneous (natural) pro-
cesses!

Application to heat engines:

consider cycle between 2 heat reservoirs:

1st law ⇒ 0 =
∮

dU =
∮

δW +
∮

δQ
⇒ Q1 + Q2 + W = 0⇒ −W = Q1 + Q2

Q1 > 0 heat transfer to the system; Q2 < 0 heat transfer from the system;
W < 0 work done

2nd law 0 =
∮

dS >
∮

δQ
T , i.e.,

Q1

T1
+ Q2

T2
6 0
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T2

T1
+ Q2

Q1
6 0, i.e.,

η = −W
Q1

= Q1+Q2

Q1
= 1 + Q2

Q1
= 1−

T2

T1
︸ ︷︷ ︸

ηc

+
T2

T1
+

Q2

Q1
︸ ︷︷ ︸

60

⇒ η 6 ηc

No engine operating between two heat reservoirs can be more efficient than
a Carnot engine operating between those same reservoirs, efficiency cannot ex-
ceed ηc

What about more than 2 reservoirs? Consider reversible cycle operating at
temperatures that are not constant

1→ 2: Q1reversibly transferred to the system at T 6 T1

2→ 1: Q2 reversibly extracted from the system at T > T2

T

S

1 2

S S

T

T1

1 2

2

Qrev1 =
∫ 2

1
δQrev =

∫
T dS = T̄1(S2 − S1)

Qrev2 =
∫ 1

2
δQrev =

∫ 1

2
T dS = T̄2(S1 − S2)

T̄1,2: mean temperature

T1

T̄1
> 1; T2

T̄2
6 1;⇒ T2

T̄2
− T1

T̄1
6 0⇒ T2

T1
− T̄2

T̄1
6 0

Qrev1

T̄1
+

Qrev2

T̄2
= 0→

Qrev2

Qrev1
= − T̄2

T̄1
,

that means ηrev =
Qrev1+Qrev2

Qrev1
= 1 +

Qrev2

Qrev1
= 1− T̄2

T̄1
=
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= 1−
T2

T1
︸ ︷︷ ︸

ηc

+
T2

T1
−

T̄2

T̄1
︸ ︷︷ ︸

60,see above

⇒ ηrev 6 ηc

That is, the variation of the temperature reduces the efficiency of the reversible
cycle with respect a reversible cycle operating between the respective minimum
and maximum temperatures.

4.4 Thermodynamic and empirical temperature

For Carnot cycle it holds: T1

T2
= |Q1|

|Q2|
with T1,T2 ideal gas temperature

ηc = 1− T2

T1
6 1⇒ T2 > 0

That is, the cooler one of the two heat reservoirs cannot have a negative tem-
perature, i.e, there exists an absolute null or zero point at 0 K of the empirical
ideal gas temperatur.

Temperatures can be measured via heat transfer using the Carnot cycle:

T = |Q|
|Qref |

Tref ; Tref = 273.16 K (water tripel point)

Measurement specification independent of materials properties, (in fact mea-
sure energies, can be done using well established procedures) therefore we speak
of absolute or thermodynamical temperature!

Usage of Carnot cycle for temperature measurement not really convenient⇒ use
empirical temperature scale that is gauged with respect to the thermodynamic
temperature.

4.5 Reversible ersatz processes

Entropy is thermodynamical parameter, i.e, entropy change ∆S = S2−S1 dur-
ing a process between two states Z1 and Z2 does not depend on the particular
”path”, i.e., thermodynamic process leading from Z1 to Z2.

=⇒ May consider any reversible process (so-called ersatz process) instead of
the real process in order to calculate the entropy change.

entropy change of the reversible ersatz process may be calculated by combining
1st and 2nd law of thermodynamics:

Example: pVT system
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dU = TdS− pdV→ dS = 1
T dU+ p

T dV

i.e., S=S(U,V) using CEOS →U=U(T,V) it follows
S=S(T,V) using TEOS →T=T(p,V) one obtains
S=S(p,V)

Exercises:

• Irreversible gas expansion (cf. Gay-Lussac’s experiment, Chapt. 3.5)

ΔV V V+  VΔ

∆S = Nk ln[1 + ∆V
V ] > 0

increase of entropy → irreversible, potential work has been wasted; work
is required to restore the initial state (e. g. isothermal compression)

• heat exchange between diathermic systems

T ,N T ,N1 1 2 2
Q T  >T1 2δ

T1 > T2

∆S = Cv ln
[

(n1 + n2
T2

T1
)n1(n1

T1

T2
+ n2)

n2

]

> 0 with n1 = N1

N1+N2

temperature equalization always accompanied by entropy increase

5 Thermodynamic potentials

5.1 Fundamental thermodynamic relation

1st law: δQ + δW = dU⇒ δQ
T = 1

T dU− 1
T δW

2nd law: dS = dSi + δQ
T ; dS > 0

1st & 2nd law: dS = dSi + 1
T dU− 1

T δW ; dSi > 0

in particular reversible process, i.e., dSi = 0
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Fundamental thermodynamic relation (FTR):

dS =
1

T
dU+

1

T

∑

i

yi dXi

FTR: relation between exact differentials yields entropy as function of U and
the thermodynamic parameters Xi

S=S(U,{Xi}).

comparison with dS=( ∂S
∂U ){Xi} dU +

∑

i(
∂S
∂Xi

)U,Xj ,j 6=i dXi

results in ( ∂S
∂U ){Xi} = 1

T und ( ∂S
∂Xi

)U,Xj
= yi

T

⇒ T = T (U, {Xi})
⇒ yi = yi(U, {Xi})

i.e., S,T, and all yi are functions of (U,{Xi})
=⇒ (U,{Xi}) form a special minimal ensemble of thermodynamic parameters

when S is given as a function of (U,{Xi}), we know CEOS and TEOS as well,
since

1
T = ( ∂S

∂U ){Xi} ⇒ T = T (U, {Xi})⇒ U = U(T, {Xi}) (CEOS)

yi

T = ( ∂S
∂Xi

)U,{Xi} ⇒ yi = Tfi(U, {Xj}) with U=U(T,{Xi}) (CEOS from above)

⇒ yi = yi(T, {Xj}) (TEOS)

(number of TEOS’ = number of work terms in FTR)

that is S=S(U,{Xi}) determines TEOS and CEOS, i.e, all thermodynamic in-
formation about system contained in that function

therefore S(U, {Xi}) known as thermodynamic potential

A thermodynamic potential is a scalar potential function used to represent the
thermodynamic state of a system. As we will see below, S(U, {Xi}) is neither
the only thermodynamic potential nor the most convenient one.

Are TEOS&CEOS independent relations?

CEOS ⇒ dU = (∂U
∂T ){Xi} dT +

∑

i(
∂U
∂Xi

)T,{Xj} dXi with j 6= i

insert in FTR:
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dS = 1
T

{

(∂U
∂T ){Xi} dT +

∑

i

[

( ∂U
∂Xi

){Xj},T + yi

]

dXi

}

that is S=S(T,{Xj})

dS=( ∂S
∂T ){Xi} dT +

∑

i(
∂S

∂Xi)
)T,{Xj} dXi

compare coefficients: ( ∂S
∂T ){Xi} = 1

T (∂U
∂T ){Xi} ⇒

∂2S
∂Xi∂T = 1

T
∂2U

∂Xi∂T (*)

( ∂S
∂Xi

)T,{Xj} = 1
T

[

( ∂U
∂Xi

)T,{Xi} + yi

]

⇒ ∂2S
∂T∂Xi

= − 1
T 2

[

( ∂U
∂Xi

)T,{Xj} + yi

]

+ 1
T

[
∂2U

∂T∂Xi
+ ∂yi

∂T

]

(**)

(*)/(**) ⇒ T (∂yi

∂T ){Xi} = ( ∂U
∂Xi

)T,{Xj} + yi ; Maxwell’s Relation

CEOS&TEOS related to each other!

Maxwell’s relations are a set of equations in thermodynamics which are derivable
from the definitions of the thermodynamic potentials. The Maxwell relations
are statements of equality among the second derivatives of the thermodynamic
potentials that follow directly from the fact that the order of differentiation of
an analytic function of two variables is irrelevant.

5.2 Thermodynamic energy potentials

S(U,{Xi} is thermodynamic potential provided it depends on the parameters
(U,{Xi}), the parameters are known as natural variables of that potential

If a thermodynamic potential can be determined as a function of its natural
variables, all of the thermodynamic properties of the system can be found by
taking partial derivatives of that potential with respect to its natural variables
and this is true for no other combination of variables. Remember the last chap-
ter, where TEOS and CEOS were obtained from S(U, {Xi})

FTR: dS= 1
T dU + 1

T

∑

i yi dXi

⇒ U = U(S, {Xi}) thermodynamic potential with natural variables (S,{Xi})

dU=TdS−
∑

i yi dXi

further Maxwell’s relations from ∂2U
∂Xi∂S = ∂2U

∂S∂Xi

that is ( ∂T
∂Xi

)S,{Xj} = −(∂yi

∂S ){Xj}

analogously ∂2U
∂Xi∂Xj

= ∂2U
∂Xj∂Xi

⇒ (
∂yj

∂Xi
)S,{Xj} = ( ∂yi

∂Xj
)S,{Xi}

Problem: thermodynamic parameter S difficult to measure, difficult to con-
trol
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→ U = U(S, {Xi}) as thermodynamic potential often not very useful
→ eliminate S by Legendre transform
→ introduce free energy F = U - TS

dF = dU−TdS− SdT = − SdT−
∑

i yi dXi; (FTR exploited: ⇒ dU = TdS−
∑

i yi dXi)

⇒ F = F (T, {Xi})

that is, F is thermodynamic potential with natural variables (T,{Xi})
Interpretation?

assume T=const. ⇒ dT = 0⇒ dF = −
∑

i yi dXi ;
∑

i yi dXi = δW

That is, at constant temperature corresponds the difference of the free energy
exactly the work done on the system.

Remark: The free energy was developed by Hermann von Helmholtz and is usu-
ally denoted by the letter A (from the German Arbeit or work), or the letter F.
The IUPAC recommends the letter A as well as the use of name Helmholtz en-
ergy. In physics, A is somtimes referred to as the Helmholtz function or simply
free energy (although not in other disciplines).

5.3 pVT systems

Maxwell’s relation from S(U,{Xi}) (cf. 5.1)

T (∂yi

∂T ){Xi} = ( ∂U
∂Xi

)T,{Xj} + yi

simplifies to
T ( ∂p

∂T )V = ( ∂U
∂V )T + p⇔ ( ∂U

∂V )T = T 2( ∂
∂T ( p

T ))V

for pVT systems. Thus relation between TEOS&CEOS for pVT systems

Example ideal gas:
TEOS: pV = NkT
⇒ ( ∂U

∂V )T = T 2( ∂
∂T ( p

T )) = T 2( ∂
∂T (Nk

V )) = 0
⇒ internal energy cannot depend on the volume!

Compressibility:

κ = − 1
V

dV
dp depends obviously on the conditions for the compression

• Isothermal: κT = − 1
V (∂V

∂p )T

• Adiabatic (isentropic): κS = − 1
V (∂V

∂p )S
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κT

κS
=

( ∂V
∂p

)T

( ∂V
∂p

)S

remember polytropic equation for p(V) in (3.2)

(∂T
∂p )V

dp
dV = −

Cp−C
Cv−C ( ∂T

∂V )p

now adiabatic process (C=0):

⇒ (∂T
∂p )V ( ∂p

∂V )S = −
Cp

Cv
( ∂T

∂V )p

⇒ (∂V
∂p )−1

S = −
Cp

Cv
( ∂T

∂V )p/(∂T
∂p )V thus

κT

κS
= −

Cp

Cv
(
∂T

∂V
)p(

∂V

∂p
)T /(

∂T

∂p
)V

︸ ︷︷ ︸

=−1, proof below

thus eventually

κT

κS
=

Cp

Cv

addendum: missing proof
TEOS f(p, T, V ) = 0
⇒ df = ∂f

∂P dp + ∂f
∂V dV + ∂f

∂T dT = 0

⇒ in particular:

(∂V
∂p )T = −

( ∂f
∂p

)

( ∂f
∂V

)

( ∂p
∂T )V = −

( ∂f
∂T

)

( ∂f
∂p

)

(∂V
∂T )p = −

( ∂f
∂T

)

( ∂f
∂V

)

⇒ (∂V
∂T )p(

∂T
∂p )V ( ∂p

∂V )T = −1

further important thermodynamic potentials:

hitherto: internal energy U=U(S,V); dU=T dS−p dV

T = (∂U
∂S )V ;−p = ( ∂U

∂V )S

equate 2nd derivatives , Maxwell’s relation ⇒ ( ∂T
∂V )S = −( ∂p

∂S )V

free energy

F=U−TS; dF = dU−T dS−S dT = T dS−p dV−T dS−S dT = −S dT−p dV

⇒ F = F (T, V )⇒ −S = (∂F
∂T )V ;−p = ( ∂F

∂V )T
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Maxwell’s relation: ( ∂S
∂V )T = ( ∂p

∂T )V

Variation in the free energy corresponds to the work done on the system isother-
mally.

Chemical reactions often occur at const. pressure, e.g., atmospheric pressure,
while the volume varies.

⇒ eliminate dependence on volume in the internal energy by Legendre trans-
form;
that leads us to the enthalpy: H = U + pV

dH = dU+p dV +V dp = T dS−p dV+p dV +V dp = T dS +V dp

⇒ H = H(S, p)⇒ T = (∂H
∂S )p; V = (∂H

∂p )S

Maxwell’s relation: (∂T
∂p )S = (∂V

∂S )p

Variation in the enthalpy corresponds to the change of energy during isobaric
processes → Example: enthalpy of formation in chemistry

Problem: entropy is not really convenient as a natural variable

→ eliminate dependence on entropy by Legendre transform

Gibbs free energy: G = H−TS = U+pV−TS ⇒ dG = dU+p dV +V dp−T dS−S dT

⇒ dG = T dS−p dV +p dV+V dp−T dS−S dT = V dp−S dT⇒ G = G(p, T )

For many practical purposes ideal, since (p,T) is constant for all homogenous
parts of a system in equilibrium

(∂G
∂T )p = −S ; (∂G

∂p )T = V

Maxwell’s relation: (∂S
∂p )T = −(∂V

∂T )p

crib: Guggenheim scheme
(SUV Hift Fysikern pei Großen Taten)
(G ood physicists have studied u nder very fine teachers.
−→ +
S U V
H F
p G T
←− −
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contains thermodynamic potentials (centre) in dependence on its natural vari-
ables (corners), result of partial derivative in respective opposite corner, sign
according to direction
(Examples: (∂U

∂S )V = T and (∂F
∂V )T = −p)

Examples for thermodynamic poterntials: U and F for ideal gas
(proof: exercise)

U = U(S, V ) = U0 + CvT0

[

( V
V0

)−Nk/Cvexp[S−S0

Cv
]− 1

]

F = F (V, T ) = Cv(T − T0) + U0 − T ln
[

( T
T0

)Cv ( V
V0

)Nk
]

− TS0

6 Third law of thermodynamics

1st/2nd law ⇒ ∃ absolute null point, absolute temperature (defined via Carnot
cycle)

Nernst’s postulate , 3rd law of thermodynamics:
As a system approaches absolute zero (T→ 0) its entropy approaches
a minimum value and tends to a constant independently of the other
thermodynamic parameters.

That is limT→0 S = S0 =const.

with ∆S = S − S0 it follows limT→0 ∆S = 0

limT→0(
∂S
∂Zk

)T,{Zi},i6=k = 0

S0 =const., independent of thermodynamic parameters ⇒ WLOG S0 = 0

conclusion derived from the third law: It is impossible by any procedure,
no matter how idealised, to reduce any system to the absolute zero
of temperature in a finite number of operations.

proof that this statement follows from Nernst’s postulate:

assume: T=0 can be achieved

operate Carnot cycle between two heat reservoirs at T1 > 0 and T2=0

∮
dS = 0⇒ ∆S12 + ∆S23 + ∆S34 + ∆S41 = 0
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1→ 2 : isothermal expansion ∆S12 = Q
T ; Q 6= 0

2→ 3: adiabatic expansion ∆S23 = 0

3→ 4: isothermal compression ∆S34 = 0 (3rd law S=const)

4→ 1: adiabatic compresseion ∆S41 = 0

D.h. ∆S12 = 0⇒ contradicts Q 6= 0

q.e.d.

Remark

• Carnot cycle between T1 = T > 0 and T2=0 were a perpetual motion
machine of the second kind

• may postulate the unattainability of absolute zero of temperature as third
law of thermodynamics

• thermodynamic coefficients for T → 0:
free energy F = F (T, {Xi}); dF = −S dT−

∑

i yi dXi

Maxwell’s relations hold: ( ∂S
∂Xi

)T,{Xj} = (∂yi

∂T ){Xj} with i6= j

T → 0⇒ ( ∂S
∂Xi

)T,{Xj} = 0⇒ limT→0(
∂yi

∂T ){Xj} = 0
(because of 3rd law)
That means thermodynamic coefficients ∂yi

∂T approach constant value with
zero slop for T=0.

7 Systems with varying numbers of particles

Examples:

• liquid in equilibrium with its saturated vapor; number of particles in both
phases depends on temperature and pressure

• chemical reactions

7.1 Chemical potential

Thermodynamic system with Nα particles in different phases or different parti-
cle species
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internal energy depends on respective numbers of particles Nα

U = U(S, {Xi}, {Nα}): thermodynamic potential, i.e, has exact differential

dU = T dS−
∑

i

yi dXi +
∑

α

µα dNα

with µα := (
∂U

∂Nα
)S,{Xi},{Nβ}β 6=α

µα is called chemical potential

may use Legendre transform to obtain thermodynamic potentials that do not
depend on the chemical potentials rather than on number of particles

earlier: F = U − TS ; dF = −S dT−
∑

i yi dXi +
∑

α µα dNα

Legendre transformation to derive grand (or Landau) potential Ω

Ω = F −
∑

α µαNα

dΩ = dF−
∑

α µα dNα−
∑

α Nαdµα with dF = −S dT−
∑

i yi dXi +
∑

α µα dNα

it follows

dΩ = −S dT−
∑

i

yi dXi−
∑

α

Nαdµα

i.e., Ω = Ω(T, {Xi}, {µα})

obviously Nα = −( ∂Ω
∂µα

)T,{Xi},{µβ}β 6=α

internal energy and entropy are thermodynamic parameters, i.e.,

U(λS, {λXi}, {λNα}) = λU(S, {Xi}, {Nα})

apply Euler’s homogeneous function theorem:

f(λXk) = λnf(Xk)⇒
∑

k Xk
∂f

∂Xk
= nf(Xk)

here n=1, i.e.,

S (
∂U

∂S
){Xi},{Nα}

︸ ︷︷ ︸

T

+
∑

i Xi (
∂U

∂Xi
)S,{Xj},{Nα}

︸ ︷︷ ︸

−yi

+
∑

α Nα (
∂U

∂Nα
)S,{Xi},{Nβ}

︸ ︷︷ ︸

µα

= U

with β 6= α, i 6= j
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=⇒ U = TS −
∑

i

yiXi +
∑

α

µαNα

Gibb’s free energy given by G = F +
∑

i yiXi

G = U − TS +
∑

i

yiXi = G(T, {yi}, {Nα}) =
∑

α

µαNα

consider system with one phase

G = µN ⇒ µ = G(T,{yi},N)
N = µ(T, {yi})

=⇒ chemical potential corresponds to Gibb’s free energy per particle!

chemical potentials are differential quotients of two extensive properties

(µα := ∂U
∂Nα

)⇒ chemical potentiala are intensive properties!

that is µα(T, {yi}, {λNβ}) = µα(T, {yi}, {Nβ})

Euler’s homogeneous function theorem for n=0

∑

β Nβ( ∂µα

∂Nβ
)T,{yi},{Nα} = 0 with α 6= β

That means variations of the chemical potentials are not independent from each
other, they interact.

7.2 pVT systems

U = U (S, V, {Nβ}) ⇒ dU = T dS−p dV+
∑

α µα dNα

F = U - TS ⇒ dF = −S dT−p dV +
∑

α µα dNα

H = U + pV ⇒ dH = T dS +V dp +
∑

α µα dNα

G = H - TS ⇒ dG = −S dT +V dp +
∑

µα dNα

obvious

µα = ( ∂U
∂Nα

)S,V,{Nβ} = ( ∂F
∂Nα

)T,V,{Nβ} = ( ∂H
∂Nα

)S,p,{Nβ} = ( ∂G
∂Nα

)T,p,{Nβ}

(β 6= α)

thermodynamic potentials are extensive properties, i.e,

U = U(S, V, N) = U(N S
N , N V

N , N) = NU( S
N , V

N , 1)
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introduce specific quantities :
s̄ = S/N ... entropy per particle
v̄ = V/N ... volume per particle
ū = U/N ... internal energy per particle

now

U = Nū(s̄, v̄), analogous F = Nf̄(T, v̄) and H = Nh̄(s̄, p) and G = Nḡ(T, p)

on the other hand we saw earlier µ = ( ∂G
∂N )p,T ⇒ µ = ḡ

thus Nµ = G = U + pV − TS ⇒ U = TS − pV + µN (**)

for U, F, H, and G the particle number is the natural variable
Legendre transform to grand potential

Ω = U − TS − µN (*)

dΩ = −S dT−p dV−Ndµ (7.1)
N = −(∂Ω

∂µ )T,V

(*) & (**) ⇒ Ω = −pV thus N = V ( ∂p
∂µ )T,V

comment to (**): generalizable to several species:

G(T, p, {Nα}) =
∑

β

µβNβ

7.3 Homogenous Mixtures

7.3.1 Ideal gas mixtures

altogether N particles in volume V

TEOS: pv̄ = kT with v̄ = V
N

Nα particles of species α obey pαv̄α = kT with v̄α = V
Nα

(real mixture), i.e,

pαV = NαkT

comparison with pV = NkT ⇒ pα = Nα

N p = n̄αp
i.e, partial pressure ∼ concentration
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sum up =⇒ Dalton’s law of partial pressures:

∑

α

pα = p

total pressure , sum of partial pressures

no real mixture: components occupy partial volumes, experience the same pres-
sure: pα = p

TEOS: pVα = NαkT

comparison with pV = NkT ⇒ Vα = Nα

N V

∑

α

Vα = V

consider transition to real mixture

p V  T p V  T

N N

1

1

2

2

di�usion
-> irreversible mixing

entropy is additive

∆S = S1(T, V, N1) + S2(T, V, N2)− S1(T, V1, N1)− S2(T, V2, N2)

need ideal gas entropy, is holds (FTR+CEOS+TEOS):

dS = Cv

T dT +Nk
V dV

⇒ S − S0 = Cv ln T
T0

+ Nk ln V
V0

apply to both parts of the system:

variation of entropy ∆S = N1k ln V
V1

+ N2k ln V
V2

it holds V
V1

= N
N1

and V
V2

= N
N2
⇒ ∆S = N

{
N1

N k ln N
N1

+ N2

N k ln N
N2

}

thus ∆S = −Nk {n̄1 ln n̄1 + n̄2 ln n̄2}

generalize to more components : entropy of mixing ideal gases:

∆S = −Nk
∑

α

n̄α ln n̄α

Obviously ∆S > 0, thus mixing irreversible
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Remarkably n̄α = Nα/N corresponds to the probability Pα to pick a par-
ticle of species α from the mixture. The specific entropy of mixing is thus
−k

∑

α Pα lnPα = −klnP . This is one of the very few parts of thermodynamics
that give a hint for the statistic interpretation of the entropy!

consider variations of specific quantities upon mixing:

S
N = s̄(T, p, {n̄α}) =

∑

α n̄α s̄α(T, p)
︸ ︷︷ ︸

A1

−k
∑

α n̄α ln n̄α =

=
∑

α n̄α s̃α(T, p, {n̄α)
︸ ︷︷ ︸

s̄α − k ln n̄α
︸ ︷︷ ︸

A2

where A1 = specific entropy of component α before the mixing
and A2 = partial specific entropy after the mixing

derive specific Gibb’s free energy of mixing:

ḡ(T, p, n̄α) = ū− T s̄ + pv̄ =
∑

α

{
Nα

N
U

Nα
− T n̄αs̃α + pNα

N
Vα

Nα

}

(here it holds v̄ = V/N ; V =
∑

α Vα)
=

∑

α {n̄αūα − T n̄αs̃α + pn̄αv̄α}
=:

∑

α n̄αg̃α

with g̃α(T, P, n̄α) = ūα+pv̄α−T s̃α = ūα + pv̄α − T s̄α
︸ ︷︷ ︸

ḡα(T,P )... spec. Gibb’sfreeEn. before mix.

+kT ln n̄α

Earlier (7.2): G =
∑

α µαNα

Here: ḡ =
∑

α µα
Nα

N =
∑

α µαn̄α

thus
µα(T, P, n̄α) = ḡα(T, P ) + kT ln n̄α

That means the chemical potentials depend on the contration!

if the species are the same, it holds in particular

∆S = S(T, V, N)− S(T, V1, N1)− S(T, V2, N2)
= Ns̄(v̄, T )−N1s̄(

V1

N1
, T )−N2s̄(

V2

N2
, T )

TEOS for “equal” pVT systems: p = f( V
N , T ) = f( V1

N1
, T ) = f( V2

N2
, T )

⇒ V
N = V1

N1
= V2

N2
⇒ ∆S = 0
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7.3.2 Mixtures of real gases

particles interact ⇒ partial specific parameters z̃α do not only depend on n̄α,
but depend also on the concentration of the other species. In particular, the
internal energy does not simply correspond to the sum of the specific energies
of the respective components, but consists generally on deviating quantities ũα

multiplied with the respective concentration

tangent rule to determine ũα:

consider binary mixture (α=1,2)

U(T, P, N1, N2) = N1ũ1 + N2ũ2

ū(T, P, N1, N2) = n̄1ũ1 + n̄2ũ2

How to determine ũ1 und ũ2?

earlier (7.1):
∑

β Nβ
∂z̃β

∂Nα
= 0 (Euler’s homogeneous function theorem for par-

tial specific parameter)

yields here
⇒ N1(

∂ũ1

∂N1
)T,P,N2 + N2(

∂ũ2

∂N1
)T,P,N1 = 0

⇔ n̄1
∂ũ1

∂n̄1
+ n̄2

∂ũ2

∂n̄1
= 0

calculate by exploiting n̄2 = 1− n̄1
∂

∂n̄1
ū(T, P, N1, N2) = ∂

∂n̄1
(n̄1ũ1 + n̄2ũ2) =

= ũ1 + n̄1
∂ũ1

∂n̄1
+ n̄2

∂ũ2

n̄1
︸ ︷︷ ︸

= 0 (see above)

−ũ2

⇒ ∂ū
∂n̄1

= ũ1 − ũ2, as well as ū = n̄1ũ1 + n̄2ũ2

⇒ measure dependence ū on concentration → obtain ũ1 and ũ2!

heat of mixture

before mixing: H0(T, p, {Nα}) =
∑

α Nαh̄α(T, p)

after mixing: H(T, p, {Nα}) =
∑

α Nαh̃α(T, p)

⇒ ∆H = H −H0 =
∑

α Nα(h̃α − h̄α)

⇒ qm = ∆H
N =

∑

α n̄α(h̃α − h̄α)

• mixtures of ideal gases always stable

• liquids may or may not be mixable, depends on temperature and concen-
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tration

T

n1

T

n1

T

n1

T

n1

no mixing possible

8 Conditions of stable equilibrium

the entropy of an isolated system cannot decrease, dS > 0

in equilibrium dS = 0;S = Smax

that means equilibrium corresponds to the solution of an extremal problem
with the side condition of isolation

Example: pVT system with mass M

side conditions: U=const.; V=const. and M=const.

condition of equilibrium
δS =

∑

i
∂S
∂yi

δyi = 0
where δyi is a virtual change of the parameter yi that is compatible with
δU = δV = δM = 0

in short, the condition of equilibrium is

(δS)U,V,M = 0

condition of equilibrium → entropy assumes extreme value; in particular maxi-
mum for

(δ2S)U,V,M =
1

2

∑

i,j

∂2S

∂yi∂Yj
δyiδYj < 0

that is the condition for stable equilibrium

ensure stability or at least meta stability (Example: overheated liquid)
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S

ystable
equil.

metastable
equil.

instable

Often system in equilibrium with their surroundings are more interesting than
isolated systems. In those cases the equilibrium conditions are different. They
can be determined by combining 1st and 2nd law. In particular for pVT systems
it holds

T dS > δQ = dU+p dV

1. system isolated, i.e., dU = 0, dV = 0⇒ dS > 0 (see above)

2. processes occur at const. entropy and const. volume, i.e,

dS = 0, dV = 0⇒ dU 6 0
condition for stable equilibrium
(δU)S,V,M = 0; (δ2U)S,V,M > 0

3. processes occur at const. temperature and const. volume, i.e,

dT = 0, dV = 0
T dS > δQ = dU+p dV = dF + TdS + SdT +pdV
⇒ 0 > dF+ S dT

︸ ︷︷ ︸

= 0

+ p dV
︸︷︷︸

= 0

⇒ dF 6 0

condition for stable equilibrium
(δF )T,V,M = 0; (δ2F )T,V,M > 0

4. processes occur at const. entropy and const. pressure, i.e,

d.h. dS = 0, dp = 0
T dS
︸︷︷︸

= 0

> δQ = dU+p dV = dH -pdV - Vdp + pdV

⇒ dH 6 0
condition for stable equilibrium
(δH)S,p,M = 0; (δ2H)S,p,M > 0

5. (particularly important!) processes occur at const. temperature and const.
pressure, i.e.,

d.h. dT=0, dp=0
T dS > δQ = dU+p dV = dG + TdS + SdT − pdV − V dp + pdV
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⇒ dG 6 0
condition for stable equilibrium
(δG)p,T,M = 0; (δ2G)p,T,M > 0

That means there are no universal conditions that ensure stable equlibrium!
The experimental conditions define the appropriate thermodynamic potential
that assumes in equilibrium a minimum (or maximum) value.

8.1 Phase equilibrium in pVT systems

pVT system with 2 phases:

U  ,V  ,N U  ,V  ,N1 1 1 2 2 2

U = U1 + U2

V = V1 + V2

N = N1 + N2

S = S1(U1, V1, N1) + S2(U2, V2, N2) = S(U1, V1, N1, U2, V2, N2)

δS
︸︷︷︸

= 0

= ∂S1

∂U1
δU1 + ∂S1

∂V1
δV1 + ∂S1

∂N1
δN1 + ∂S2

∂U2
δU2 + ∂S2

∂V2
δV2 + ∂S2

∂N2
δN

2

side conditions δU = δU1 + δU2 = 0
δV = δV1 + δV2 = 0
δN = δN1 + δN2 = 0

thus (
∂S1

∂U1
︸︷︷︸

= 1
T1

−
∂S2

∂U2
︸︷︷︸

= 1
T2

)δU1 + (
∂S1

∂V1
︸︷︷︸

=
p1
T1

−
∂S2

∂V2
︸︷︷︸

=
p2
T2

)δV1 + (
∂S1

∂N1
︸ ︷︷ ︸

= −
µ1
T1

−
∂S2

∂N2
︸ ︷︷ ︸

= −
µ2
T2

)δN1 = 0

δU1 arbitrary ⇒ T1 = T2 thermal equlibrium
δV1 arbitrary ⇒ p1 = p2 mechanical equilibrium
δN1 arbitrary ⇒ µ1 = µ2 diffusive equilibrium

alternatively start from S = S1 + S2;V = V1 + V2;N = N1 + N2

U = U1(S1, V1, N1) + U2(S2, V2, N2)

δU
︸︷︷︸

= 0

= (
∂U1

∂S1
︸︷︷︸

= T1

−
∂U2

∂S2
︸︷︷︸

= T2

)δS1 + (
∂U1

∂V1
︸︷︷︸

= −p1

−
∂U2

∂V2
︸︷︷︸

= −p2

)δV1 + (
∂U1

∂N1
︸ ︷︷ ︸

= µ1

−
∂U2

∂N2
︸ ︷︷ ︸

= µ2

)δN1

and again if follows
T1 = T2

p1 = p2
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µ1 = µ2

condition for stable equilibrium

(δ2U)S,V,N = 1
2

(
∂2U1

∂S2
1

+ ∂2U2

∂S2
2

)

(δS1)
2+

1
2

(
∂2U1

∂V 2
1

+ ∂2U2

∂V 2
2

)

(δV1)
2 + 1

2

(
∂2U1

∂N2
1

+ ∂2U2

∂N2
2

)

(δN1)
2+

(
∂2U1

∂S1∂V1
+ ∂2U2

∂S2∂V2

)

(δS1δV1)+
(

∂2U1

∂S1∂N1
+ ∂2U2

∂S2∂N2

)

(δS1δN1)+
(

∂2U1

∂V1∂N1
+ ∂2U2

∂V2∂N2

)

(δV1δN1) > 0.

8.2 Conditions of stable equilibrium for pVT system

considerations in (8.1) hold as well for any 2 parts of a single-phase pVT system

⇒ T, p, µ const. within the system in equilibrium

system is homogenous, therefore ∂2U1

∂V 2
1

= ∂2U2

∂V 2
2

and so forth, i.e, may drop in-

dices, stability conditions simplify to

1
2

(
∂2U
∂S2

)

(δS)2 + 1
2

(
∂2U
∂V 2

)

(δV )2 + 1
2

(
∂2U
∂N2

)

(δN)2+
(

∂2U
∂S∂V

)

(δSδV ) +
(

∂2U
∂S∂N

)

(δSδN) +
(

∂2U
∂V∂N

)

(δV δN) > 0

obviously the partial derivatives represent a positive definite quadratic form

∑

n,m Anmλnλm > 0

which requires that

Ann > 0 ∀ n
AnnAmm −A2

nm > 0 ∀ n, m (n 6= m)

in particular it follows in the present case that

• (∂2U
∂S2 )V,N > 0 ;

with (∂2U
∂S2 )V,N = (∂T

∂S )V,N = T
Cv

follows (because T > 0) Cv > 0
i.e., stable equilibrium requires positive CV ⇒ heating the system results
in temperature increase

• ( ∂2U
∂V 2 )S,N > 0;

with ( ∂2U
∂V 2 ) = (− ∂p

∂V )S,N follows (∂V
∂p )S,N < 0
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i.e., increasing the pressure at const. entropy (i.e., adiabatically) reduces
the volume of stable systems

8.3 Gibbs’ phase rule

system consists of K components (i.e., species) that occur in P phases; exclude
conversion of species

(8.1) equilibrium characterized by common temperature T and common pres-
sure p

⇒ Gibb’s free energy G(T, p, {Nα}) appropriate thermodynamic potential

(7.2) G =
∑K

α

∑P
i µi

αN i
α ; K = number of components, P = number of phases

and N i
α= number of particles of species (component) α in phase i

search for minimum of G with side condition of particle number conservation

Nα =
∑

i N i
α with α = 1 . . . K

method of Lagrange multipliers:

δ(G−
∑

α

∑

i λαN i
α) = 0

⇒
∑

α

∑

i[(
∂G

∂N i
α

︸ ︷︷ ︸

µi
α

)T,p,Ni
β
− λα]δN i

α = 0 with β 6= α

=⇒
∑

α

∑

i(µ
i
α − λα)δN i

α = 0⇒ µi
α − λα = 0

Thus (*)

µ1
1 = µ2

1 = µ3
1 = . . . = µp

1
...

...
µ1

k = . . . = µp
k

here it holds µ = µ(p, T, {ni
α})

only K-1 concentrations in a single phase i may be independent, i.e., each µ de-
pends on 2+(K−1) independent variables, i.e., altogether there are 2+P (K−1)
independent variables

system of equations (*) has K(P − 1) equations
can only be solved if K(P − 1) 6 2 + P (K − 1)
=⇒ Gibbs’ phase rule

P 6 K + 2

A system with K chemical components may not contain more than
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K+2 phases in equilibrium.

Example: single-component system K=1 ⇒ P 6 3
⇒at most 3 phases in equilibrium

f := K + 2− P , number of thermodynamic degrees of freedom

The number of degrees of freedom for a given thermodynamic condition are the
number of thermodynamic parameters (pressure, temperature etc) that may be
altered while maintaining this condition.

In the example K=1 that means

• K=1, P=1 (1 component, 1 phase) ⇒ 2 degrees of freedom (f=2)
may vary, e.g., p and T, V is then determined

• K=1, P=2 (1 component, 2 phases) ⇒ f=1
may vary, e.g., T, V and p are then determined

• K=1, P=3 (1 component, 3 phases) ⇒ f=0
V,T and p are fixed, no modifiation possible (Example: Tripel point of
water)

9 Phase transitions

Phase transition or phase change is the transformation of a thermodynamic
system from one phase to another. The distinguishing characteristic of a phase
transition is an abrupt change in one or more physical properties, in particular
the heat capacity, with a small change in a thermodynamic variable such as the
temperature. The term is most commonly used to describe transitions between
solid, liquid and gaseous states of matter, in rare cases including plasma.

Earlier (8.1): 2 phases of a (single-component) pVT system in equlibrium for

43



T1 = T2 = T ; p1 = p2 = p;µ1 = µ2 = µ

µ1(T, p) = µ2(T, p)
yields p = p(T ) or T = T (p), respectively, that corresponds to the boundary
between the two phases in the p-T phase diagram

below a typical phase diagram is shown. The dotted line gives the anomalous
behaviour of water

Temperature

P
re
ss
u
re

triple point

critical point

critical pressure

Pcr

critical
temperature
Tcr

solid phase

liquid

phase

gaseous phase

compressible

liquid

Ptp

Ttp

In any system containing liquid and gaseous phases, there exists a special com-
bination of pressure and temperature, known as the critical point, at which the
transition between liquid and gas becomes a second-order transition. Near the
critical point, the fluid is sufficiently hot and compressed that the distinction
between the liquid and gaseous phases is almost non-existent. Critical points
only exist for phases that are distinct from each other quantitatively, such as
by different strengths of the molecular interaction rather than for phases that
exhibit qualitative differences, such as between liquids and crystalline solids.

9.1 First-order phase transitions

Assume: system with 2 phases: µ1 = g1(T, p) and µ2 = g2(T, p),
set T = T0 = const.

g (p,T  )

g (p,T  )

g

p

1

2 0

0

p
0

p0 : at T = T0 both phases are in equilibrium for p = p0

p < p0 : phase 2 stable
p > p0 : phase 1 stable
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(earlier, (5.3)):
(∂ḡ

∂p )T = v̄

obviously there is a discontinuity in the derivative of ḡ with p at p = p0

v̄ = (∂ḡ
∂p )T has a step at p = p0

v

pp
0

v

v

1

2

consider specific free energy f̄ = ḡ − pv̄

it holds p = p0 = const. for the coexistence of the phases
ḡ1(p0) = ḡ2(p0)⇒ f̄ descents linearly

vv v1 2

f

f

f

1

2

analogous consideration for specific entropy
s̄ = −( ∂ḡ

∂T )p has a discontinuity at the phase transition
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g

T0 T

1

2

s

T0

s

s

1

2

T

h̄ = ḡ + T s̄⇒ q̄12 = h̄2 − h̄1 = T0(s̄2 − s̄1);
(ḡ is constant for the conditions of coexistence of the two phases);
q̄12 is the latent heat

coexistence of 2 phases ⇒ µ1 = ḡ1 = ḡ2 = µ2

dḡ1(T, p) = −s̄1 dT +v̄1 dp = dḡ2(T, p) = −s̄2 dT +v̄2 dp
dp
dT = s̄2−s̄1

v̄2−v̄1

leads to the Clausius-Clapeyron relation (for T = T0)

dp

dT
=

∆s̄T

∆v̄T
=

q12

T (v̄2 − v̄1)

Example: transition liquid → gas, i.e., v̄2 ≫ v̄1; q12 > 0⇒ dT
dP > 0

i.e., upon increasing pressure the boiling point shifts to higher temperatures

now quantitatively for the case liquid - gaseous:
v̄2 ≫ v̄1 ⇒

dp
dT ≈

q12

T v̄2

approximation ideal gas: pv̄ = kT
dp
dT ≈

q12p
kT 2

⇒ dlnp
dT ≈

q12

kT 2

need latent heat q12

dq12

dT = d
dT(h̄2 − h̄1) = (∂h̄2

∂T )p + (∂h̄2

∂p )T
dp
dT − (∂h̄1

∂T )p − (∂h̄1

∂p )T
dp
dT

dh̄ = Tds̄ + v̄ dp
dp = 0⇒ h̄ = δq ⇒ ( ∂h̄

∂T )p = c̄p

thus dq12

dT = c̄p2 − c̄p1 +
[

(∂h̄2

∂p )T − (∂h̄1

∂p )T

]
dp
dT

consider h̄(T, p) as h̄ = h̄(p, s̄(T, p))

then (∂h̄
∂p )T = (

∂h̄

∂p
︸︷︷︸

= v̄

)s̄ + (
∂h̄

∂s̄
︸︷︷︸

= T

)p(
∂s̄
∂p )T =
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v̄ + T (
∂s̄

∂p
︸︷︷︸

= −( ∂v̄
∂T

)p Maxwell’s relation

)T

= v̄ − T ( ∂v̄
∂T )p

thus
dq12

dT = c̄p2 − c̄p1 +
[

v̄2 − v̄1 − T (∂(v̄2−v̄1)
∂T )p

]
dp
dT

with v̄2 ≫ v̄1

≈ c̄p2 − c̄p1 + [v̄2 − T (
∂v̄2

∂T
︸︷︷︸

k
p

(TEOS id. gas)

)p

︸ ︷︷ ︸

≈ 0 (TEOS id. gas)

] dp
dT ≈ ∆c̄p

assume a weak temperature dependence of ∆c̄p

⇒ q̄12 = ∆c̄p(T − T0) + q
(0)
12

thus
d ln p
dT =

∆c̄p

kT +
q̄
(0)
12 −∆c̄pT (0)

kT 2

solution of this differential equation given by

p

p(0)
=

(
T

T (0)

)(∆c̄p/k)

exp

[

q̄
(0)
12 −∆c̄pT

(0)

kT (0)T
(T − T (0))

]

thus boiling point increase for higher pressures

9.2 Phase transitions of a higher order

hitherto: continuos transition of ḡ, discontinuities in the derivatives

s̄ = −( ∂ḡ
∂T )p; v̄ = (∂ḡ

∂p )T

there are phase transition where the derivatives of ḡ are continuous upon phase
change, e.g.,

− structural phase changes such as α-Quartz → β-Quartz

− ferromagnetic transition

− order-disorder transition in alloys

− normal → superconductor (here ḡ = ḡ(T, H) with H mag. field)

Such phase transitions are known as higher-order phase transitions or con-
tinuous phase transitions
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definition nth-order phase transition
(

∂k ḡ1

∂T k

)

p
=

(
∂kḡ2

∂T k

)

p
;
(

∂kḡ1

∂pk

)

T
=

(
∂kḡ2

∂pk

)

T
for k6n-1

and
(

∂kḡ1

∂T k

)

p
6=

(
∂kḡ2

∂T k

)

p
;
(

∂k ḡ1

∂pk

)

T
6=

(
∂kḡ2

∂pk

)

T
for k=n

Example: 2nd-order phase transition

it holds ḡ1(T, p) = ḡ2(T, p)

(
∂ḡ1

∂T
︸︷︷︸

−s̄1(T,p)

)p = (
∂ḡ2

∂T
︸︷︷︸

−s̄2(T,p)

)p; (
∂ḡ1

∂p
︸︷︷︸

v̄1(T,p)

)T = (
∂ḡ2

∂p
︸︷︷︸

v̄2(T,p)

)T

⇒ s̄1(T, p) = s̄2(T, p)

⇒ (
∂s̄1

∂T
︸︷︷︸

c̄p1
T

)p dT +(
∂s̄1

∂p
︸︷︷︸

−(
∂v̄1
∂T

)P

)T dp = (
∂s̄2

∂T
︸︷︷︸

c̄p2
T

)p dT +(
∂s̄2

∂p
︸︷︷︸

−
∂v̄2
∂T

)T dp

with α = 1
V (∂V

∂T )p =isobaric expansion coefficient

follows c̄p2 − c̄p1
︸ ︷︷ ︸

∆c̄P

= T dp
dT [ v̄2

︸︷︷︸

=v̄1=v̄

α2 − v̄1α1]

1st Ehrenfest relation:

dp

dT
=

∆c̄p

T v̄∆α

(analogon to the Clausius-Clapeyron relation)
from v̄2 = v̄1 follows analogously

2nd Ehrenfest relation:

dp

dT
=

∆α

∆κT

with κT =isothermal compressibility

eliminate dp
dT in 1st and 2nd Ehrenfest relation

⇒ ∆c̄p = T v̄
(∆α)2

∆κT

typical discontinuities in the heat capacities for 2nd-order phase transitions:
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c

T

p

Remark: often possible to define order parameter, e.g.,

• magnetization M = S↑−S↓
S↑+S↓ for a ferromagnetic system undergoing a phase

transition

• structural order for solids

• density for solid/liquid or liquid/gas transitions

that characterize the phase transition. An order parameter is a measure of the
degree of order in a system; the extreme values are 0 for total disorder and 1 for
complete order. In a first-order transition, the order parameter would change
discontinuously at the transition temperature (e.g., melting of a solid) while
it changes continuously for higher-order phase transition (e.g., ferromagnetic
transition)

10 Application to magnetism

~B = µ0
~H + ~M

here is ~B: magnetic field (historical magnetic induction) ~H : auxiliary magnetic

field or magnetizing field and ~M : magnetization density

magnetic moment ~M =
∫

~M(~r)d3~r

for the sake of simplicity scalar variables in the following

work needed to change magnetic moment of a body in external field by dM:
δW = H dM

volume of the body remains constant
dU = δQ + H dM
dF = dU−T dS−S dT = −S dT+H dM

H = ( ∂F
∂M )T : TEOS for magnetic materials

cf. p = −( ∂F
∂V )T : TEOS for pVT system

that means we apply all previously derived thermodynamic relations for pVT
systems to magnetizable materials by means of simply replacing
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p→ −H
V →M

e.g., CM = (∂U
∂T )M ; CH − CM = −T (∂H

∂T )M (∂M
∂T )H

relation between TEOS&CEOS: ( ∂U
∂M )T = H − T (∂H

∂T )M (*)

10.1 Diamagnetism

Diamagnetism is the property of an object which causes it to create a magnetic
field in opposition of an externally applied magnetic field, thus causing a repul-
sive effect. It is a form of magnetism that is only exhibited by a substance in
the presence of an externally applied magnetic field.

M = µ0χMH with χM < 0, magnetic susceptibility const, does not depend
on temperature

(∂CM

∂M )T = ∂2U
∂T∂M = (*)

∂
∂T (H − T (∂H

∂T )M )M = −T (
∂2H

∂T 2
︸ ︷︷ ︸

= 0

)M = 0

→ CM does not depend on M!

dS = dU−H dM
T = 1

T

{
(∂U

∂T )M dT +( ∂U
∂M )T dM−H dM

}
= (*)

= 1
T {(

∂U

∂T
︸︷︷︸

CM

)M dT+H dM−T (
∂H

∂T
︸︷︷︸

= 0

)M −H dM}

⇒ dS = CM

T dT⇒ entropy depends on the temperature only!

Thus the temperature does not change upon adiabatic reversible change of the
magnetic moment of the body.

10.2 Paramagnetism

Paramagnetism is a form of magnetism which occurs only in the presence of
an externally applied magnetic field. Paramagnetic materials contain atoms or
molecules with an internal magnetic moment that aligns in the external field.
The alignment increases with the strength of the external field and decreases
for rising temperatures.

TEOS (Curie’s law):

M =
C

T
H (C.. const.)
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( ∂U
∂M )T = H − T (

∂H

∂T
︸︷︷︸

M
C

)M = 0 (*)

The internal energy does thus not depend on the magnetic moment.

dS = dU−H dM
T = CM

T dT−M
C dM

reversible adiabatic processes: dS=0
⇒ CM

T dT = M
C dM

⇒ cooling by adiabatic demagnetization, socalled magnetic refrigeration

Thermodynamic cycle The cycle is performed as a refrigeration cycle, analo-
gous to the Carnot cycle, and can be described at a starting point whereby the
chosen working substance is introduced into a magnetic field (i.e. the magnetic
flux density is increased). The working material is the refrigerant, and starts in
thermal equilibrium with the refrigerated environment.

1. Adiabatic magnetization: The substance is placed in an insulated environ-
ment. The increasing external magnetic field (+H) causes the magnetic
dipoles of the atoms to align, thereby decreasing the material’s magnetic
entropy and heat capacity. Since overall energy is not lost (yet) and there-
fore total entropy is not reduced (according to thermodynamic laws), the
net result is that the item heats up (T + ∆Tad).

2. Isomagnetic enthalpic transfer: This added heat can then be removed by
a fluid or gas - gaseous or liquid helium for example (-Q). The magnetic
field is held constant to prevent the dipoles from reabsorbing the heat.
Once sufficiently cooled, the magnetocaloric material and the coolant are
separated (H=0).

3. Adiabatic demagnetization: The substance is returned to another adiabatic
(insulated) condition so the total entropy remains constant. However,
this time the magnetic field is decreased, the thermal energy causes the
magnetic moments to overcome the field, and thus the sample cools (i.e.
an adiabatic temperature change). Energy (and entropy) transfers from
thermal entropy to magnetic entropy (disorder of the magnetic dipoles).

4. Isomagnetic entropic transfer: The magnetic field is held constant to pre-
vent the material from heating back up. The material is placed in thermal
contact with the environment being refrigerated. Because the working ma-
terial is cooler than the refrigerated environment (by design), heat energy
migrates into the working material (+Q).

Once the refrigerant and refrigerated environment are in thermal equilibrium,
the cycle begins anew.
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T

H=H

H=0

1

10.3 Ferromagnetism

Ferromagnetic materials contain many atoms with unpaired spins. When these
tiny magnetic dipoles are aligned in the same direction, they create a measur-
able macroscopic field. These permanent dipoles (often called simply ”spins”
even though they also generally include orbital angular momentum) tend to
align in parallel to an external magnetic field, an effect called paramagnetism.
Ferromagnetism involves an additional phenomenon, however: the dipoles tend
to align spontaneously, without any applied field. This is a purely quantum-
mechanical effect. According to classical electromagnetism, two nearby mag-
netic dipoles will tend to align in opposite directions (which would create an
antiferromagnetic material). In a ferromagnet, however, they tend to align in
the same direction because of the Pauli principle: two electrons with the same
spin cannot also have the same ”position”, which effectively reduces the energy
of their electrostatic interaction compared to electrons with opposite spin. At
long distances (after many thousands of ions), the exchange energy advantage
is overtaken by the classical tendency of dipoles to anti-align. This is why, in an
equilibriated (non-magnetized) ferromagnetic material, the dipoles in the whole
material are not aligned. Rather, they organize into magnetic domains (also
known as Weiss domains) that are aligned (magnetized) at short range, but at
long range adjacent domains are anti-aligned. The transition between two do-
mains, where the magnetization flips, is called a domain wall (i.e., a Bloch/Nel
wall, depending upon whether the magnetization rotates parallel/perpendicular
to the domain interface) and is a gradual transition on the atomic scale (cov-
ering a distance of about 300 ions for iron). Thus, an ordinary piece of iron
generally has little or no net magnetic moment. However, if it is placed in
a strong enough external magnetic field, the domains will re-orient in parallel
with that field, and will remain re-oriented when the field is turned off, thus
creating a ”permanent” magnet. This magnetization as a function of the ex-
ternal field is described by a hysteresis curve. Although this state of aligned
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domains is not a minimal-energy configuration, it is extremely stable and has
been observed to persist for millions of years in seafloor magnetite aligned by
the Earth’s magnetic field (whose poles can thereby be seen to flip at long in-
tervals). The net magnetization can be destroyed by heating and then cooling
(annealing) the material without an external field, however. As the temper-
ature increases, thermal motion, or entropy, competes with the ferromagnetic
tendency for dipoles to align. When the temperature rises beyond a certain
point, called the Curie temperature, there is a second-order phase transition
and the system can no longer maintain a spontaneous magnetization, although
it still responds paramagnetically to an external field. Below that temperature,
there is a spontaneous symmetry breaking and random domains form (in the
absence of an external field).
For T > Θ, with Θ = Curie temperature

TEOS (Curie-Weiss law)

M =
C

T −Θ
H

( ∂U
∂M )T =(*)= H − T (

∂H

∂T
︸︷︷︸

M
C

)M = −Θ
C M

Internal energy thus depends on the magnetization(cf. real vs ideal gas)!

For T < Θ⇒ hysteresis ⇒ complicated...

53


