Physik D – Atom-, Molekül- und Kernphysik SS 2010

Dr. Uwe Gerstmann 09.04.2010

Übungsblatt 1 - Wiederholung

Abgabe: 16.04.2010 (bis 12:00 in Briefkasten auf N3)

Besprechung: 19.04.2010 und 21.04.2010

1. Atomarer Druck

Ein Elektron sei im Inneren einer Hohlkugel mit Radius R gefangen. Berechnen Sie den Druck, den das Elektron (im Grundzustand) auf die Wand ausübt!

2. Interstellarer Druck

Im interstellaren Raum ist die mittlere Dichte der H-Atome etwa 1 $\rm cm^{-3}$ und die mittlere Temperatur etwa 10 K. Welcher Druck (in Pascal) herrscht dort? Ist dieser Druck auf der Erde experimentell realisierbar?

3. Klassisches Elektron

In einem klassischen Modell wird das Elektron als starre, gleichmäßig geladene Kugel mit Radius r, Masse m_e und Ladung -e beschrieben.

- (a) Wie groß ist die Umlaufgeschwindigkeit eines Punktes auf dem Äquator dieser Kugel, wenn der Drehimpuls der Kugel $\sqrt{3/4\hbar}$ ist?
- (b) Wie groß wäre bei klassischer, nichtrelativistischer Rechnung seine Rotationsenergie. Man vergleiche sie mit der Ruheenergie $m_e c^2$. Setzen Sie als Zahlenwerte einmal $r = 1.4 \cdot 10^{-5}$ m und einmal $r = 10^{-18}$ m ein.

4. Drehimpulsoperator in Kugelkoordinaten

Der Drehimpulsoperator in der Ortsdarstellung lautet:

$$\hat{\vec{L}} = \frac{\hbar}{i} \{ \hat{\vec{r}} \times \vec{\nabla} \}$$

Berechnen Sie die Darstellung der Operatoren $\hat{\vec{L}}, \hat{L^2}, \hat{L_z}$ in Kugelkoordinaten.