Prof. Dr. W.G. Schmidt

Übungen zur Elektrodynamik, WS 2010/11

Blatt 14

Abgabetermin: 28.01.2011

1. Doppelbrechung

Elektromagnetische Wellen breiten sich in einem homogenen, anisotropen Medium aus. Das Medium wird charakterisiert durch den dielektrischen Tensor ϵ_{ij} mit den Eigenwerten ϵ_i (außerdem gilt: $\mu = 1$). Wählt man die Hauptachsen des Tensors als Koordinatenachsen, dann gilt $D_i = \epsilon_i E_i$ (für i = 1, 2, 3). Es handle sich um einen optisch einachsigen Kristall mit $\epsilon_x = \epsilon_y = \epsilon_o$ und $\epsilon_z = \epsilon_e$.

(a) Zeigen Sie, dass ebene Wellen mit der Frequenz ω und dem Wellenvektor \vec{k} die folgende Gleichung erfüllen:

$$\vec{k} \times (\vec{k} \times \vec{E}) + \mu_0 \omega^2 \vec{D} = 0. \tag{1}$$

(b) Zeigen Sie, dass für einen gegebenen Wellenvektor $\vec{k}=k\vec{n}$ (mit $\vec{n}^2=1$) zwei verschiedene Ausbreitungsmoden mit verschiedenen Phasengeschwindigkeiten $v=\omega/k$ existieren.

2. Isotropes Medium

Ein homogenes, isotropes Dielektrikum wird charakterisiert durch den komplexen Brechungsindex $n(\omega)$.

(a) Zeigen Sie, dass sich die allgemeine Lösung für eindimensionale ebene Wellen wie folgt darstellen lässt:

$$u(x,t) = \frac{1}{\sqrt{2\pi}} \int d\omega \, e^{-i\omega t} [A(\omega)e^{i(\omega/c)n(\omega)x} + B(\omega)e^{-i(\omega/c)n(\omega)x}], \qquad (2)$$

wobei u(x,t) eine Komponente des elektrischen Felds ist.

(b) Zeigen Sie weiterhin: falls u(x,t) reell ist, dann gilt $n(-\omega) = n^*(\omega)$.

3. Stromdurchflossener Draht

In einem unendlich langen und dünnen geraden Leiter werde zum Zeitpunkt t=0 überall gleichzeitig der konstante Strom I_0 eingeschaltet: $\vec{j}(\vec{r},t) = I_0\Theta(t)\delta(x)\delta(y)\vec{e}_z$. Zeigen Sie, dass das retardierte Vektorpotential (Lorentz-Eichung) durch

$$\vec{A}(\vec{r},t) = \frac{\mu_0 I_0}{2\pi} \Theta(ct-s) \operatorname{arcsinh}(\sqrt{(ct/s)^2 - 1}) \vec{e}_z \text{ mit } s = \sqrt{x^2 + y^2}$$
 (3)

gegeben ist. Wie schränkt die Stufenfunktion die Integration ein? Bestimmen Sie aus $\vec{A}(\vec{r},t)$ das Magnetfeld $\vec{B}(\vec{r},t)$. Was erhält man für $ct \gg s$?