Prof. Dr. W.G. Schmidt

Übungen zur Elektrodynamik, WS 2010/11

Blatt 6

Abgabetermin: 19.11.2010

1. Symmetrien und Multipole

Die Entwicklung von Funktionen $f(\vec{r})$ nach Kugelflächenfunktionen lautet:

$$f(\vec{r}) = \sum_{l,m} f_{lm}(r) Y_{lm}(\theta, \phi) \text{ mit } f_{lm}(r) = \int d\Omega Y_{lm}^*(\theta, \phi) f(\vec{r}).$$

Welche Koeffizienten $f_{lm}(r)$ verschwinden in den Fällen $f(\vec{r}) = f(r,\theta), f(\vec{r}) = f(-\vec{r})$ und $f(\vec{r}) = -f(-\vec{r})$?

2. Kugelkondensator mit Materie

Gegeben seien zwei leitende Kugelschalen mit den Radien R_1 und R_2 ($R_1 < R_2$), wobei die erste mit der Ladung Q_1 und die zweite mit der Ladung $Q_2 = -Q_1$ belegt ist. Die Anordnung stellt einen Kugelkondensator dar. Innerhalb der beiden Kugelschalen befindet sich ein isotropes lineares Dielektrikum mit der relativen Dielektrizitätskonstante ϵ_1 . Berechnen Sie die Kapazität des Kondensators!

3. Quadrupoltensor von Rotationsellipsoid und Kreiszylinder

Bestimmen Sie den Quadrupoltensor folgender, homogen geladener Körper:

- (a) Rotationsellipsoid mit den Halbachsen a und b.
- (b) Kreiszylinder mit der Länge L und dem Radius R.

Wählen Sie jeweils ein geeignetes Koordinatensystem.