System Partitioning

SS 2010
Hw/Sw Codesign

Christian Plessl
Overview

• Graph models for system synthesis
• The partitioning problem
• Partitioning methods
• Design space exploration
Models for System Synthesis

• Allocation + Binding = Partitioning

• Problem graph
 – nodes: functional and communication objects
 – edges: dependencies

• Architecture graph
 – nodes: functional and communication resources
 – edges: directed communication paths

• Specification graph
 – problem graph + architecture graph + possible mappings
Problem Graph

DFG

1

2

3

4

communication nodes

problem graph

1

2

3

4

5

6

7

UNIVERSITÄT PADERBORN

Die Universität der Informationsgesellschaft

HW/SW Codesign Ch 6 2010-06-14

4
Architecture Graph

architecture

RISC

HWM1

HWM2

bus

point-to-point link

architecture graph

\[V_{\text{RISC}} \]

\[V_{\text{bus}} \]

\[V_{\text{HWM1}} \]

\[V_{\text{ptp}} \]

\[V_{\text{HWM2}} \]
Example: Homogeneous Multiprocessor

- Optimization goals
 - minimize latency
 - meet deadlines
 - ...

![Diagram showing a homogeneous multiprocessor system with multiple processors connected to a central bus.](image)
Example: Hw/Sw Bi-Partitioning

- Only two blocks: SW and HW (accelerator)
Synthesis and Constraints

- **Modeling**
 1. model problem
 2. define architectural template
 3. identify possible bindings
 - refinements: communication, memory, ..

- **System synthesis with constraints** $C_{\text{max}}, L_{\text{max}}$
 1. allocation - gives cost C (first approximation)
 2. binding
 3. scheduling - gives latency L

 - feasible schedule: $L \leq L_{\text{max}}$
 - feasible binding: leads to at least one feasible schedule
 - feasible allocation: $C \leq C_{\text{max}}$ and leads to at least one feasible binding
Overview

• Graph models for system synthesis

• The partitioning problem

• Partitioning methods

• Design space exploration
Partitioning Problem

• **Definition:** The partitioning problem is to assign \(n \) objects
\[
O = \{ o_1, ..., o_n \}
\]
to \(m \) blocks (partitions)
\[
P = \{ p_1, ..., p_m \},
\]
such that

- \(p_1 \cup p_2 \cup ... \cup p_m = O \)
- \(p_i \cap p_j = \{ \} \) \(\forall \ i,j: i \neq j \) and
- the cost \(c(P) \) is minimized.

the general partitioning problem is NP-complete

• **In system synthesis:**
 – objects = problem graph nodes
 – blocks = architecture graph nodes
Partitioning – Abstraction Levels

• **Structural** partitioning
 – on the RTL- or netlist level
 ▪ eg: map a digital circuit onto two chips (FPGAs, ASICs)
 ▪ system parameters are relatively well known (area and delay of functional units, registers, gates)
 ▪ no comparison of design alternatives

• **Functional** partitioning
 – on the system level
 ▪ comparison of design alternatives → design space exploration
 ▪ system parameters are not known → estimation required
Cost Functions

- Measure quality of a design point
 - may include C ... system cost in [$]
 L ... latency in [sec]
 P ... power consumption in [W]
 - requires estimation to find C, L, P

- Example: linear cost function with penalty

\[
f(C, L, P) = k_1 \cdot h_C(C, C_{\text{max}}) + k_2 \cdot h_L(L, L_{\text{max}}) + k_3 \cdot h_P(P, P_{\text{max}})\]

- h_C, h_L, h_P ... denote how strong C, L, P violate the design constraints $C_{\text{max}}, L_{\text{max}}, P_{\text{max}}$

- k_1, k_2, k_3 ... weighting and normalization
Overview

- Graph models for system synthesis
- The partitioning problem
 - Partitioning methods
- Design space exploration
Partitioning Methods - Overview

• Exact methods
 – enumeration of solutions
 – Integer Linear Programs (ILP)

• Heuristic methods
 – constructive methods
 ▪ random mapping
 ▪ hierarchical clustering
 – iterative methods (refinement methods)
 ▪ greedy partitioners
 ▪ Kernighan-Lin
 ▪ simulated annealing
 ▪ evolutionary algorithms (design space exploration)
Integer Linear Programs (1)

- Binary variables \(x_{i,k} = 1 \): object \(o_i \) in block \(p_k \)
- Cost \(c_{i,k} \), if object \(o_i \) is in block \(p_k \)
- Integer linear program:

\[
\begin{align*}
x_{i,k} & \in \{0,1\} \quad 1 \leq i \leq n, 1 \leq k \leq m \\
\sum_{k=1}^{m} x_{i,k} &= 1 \quad 1 \leq i \leq n \\
\text{minimize} \quad & \sum_{k=1}^{m} \sum_{i=1}^{n} x_{i,k} \cdot c_{i,k} \quad 1 \leq k \leq m, 1 \leq i \leq n
\end{align*}
\]
Integer Linear Programs (2)

• Constraints are modeled by inequations
e.g.: maximal number of h_k objects in block k

\[
\sum_{i=1}^{n} x_{i,k} \leq h_k \quad 1 \leq k \leq m
\]

• ILP is NP-complete
 – in the worst-case exponential runtime
 – solved by branch&bound algorithms
 – modeling difficult when constraints are non-linear
Constructive Methods

• Examples
 – random mapping
 ▪ each object is randomly assigned to some block
 – hierarchical clustering
 ▪ stepwise grouping of objects
 ▪ closeness function determines how desirable the grouping of two objects is

• Constructive methods …
 – are often used to generate a valid start partition for iterative (refinement) methods
 – clustering often shows the difficulty of finding suitable closeness function
Hierarchical Clustering (1)

closeness between hierarchical objects: arithmetic mean

\[v_5 = v_1 \cup v_3 \]
Hierarchical Clustering (2)

\[v_6 = v_2 \cup v_5 \]
Hierarchical Clustering (3)

\[v_7 = v_6 \cup v_4 \]
Hierarchical Clustering (4)

step 1:
\[v_5 = v_1 \cup v_3 \]

step 2:
\[v_6 = v_2 \cup v_5 \]

step 3:
\[v_7 = v_6 \cup v_4 \]
Greedy Hw/Sw Partitioning (1)

- Bi-partitioning (simplest case): \(P = \{ p_{SW}, p_{HW} \} \)

- Software oriented approach: \(P = \{ O, \{ \} \} \)
 - in sw all functions can be realized
 - performance might be too low \(\Rightarrow \) migrate objects to hw

- Hardware oriented approach: \(P = \{ \{ \}, O \} \)
 - in hw the performance is ok (assumes hw is always faster than sw)
 - cost might be too high \(\Rightarrow \) migrate objects to sw
Greedy Hw/Sw Partitioning (2)

- Migration of objects into the other block (HW/SW), until there is no more improvement

```
REPEAT {
    P_{old} = P;
    FOR i = 1 TO n {
        IF (f(Move(P, o_i)) < f(P)) {
            P = Move(P, o_i);
        }
    }
    UNTIL (P == P_{old})
```
Kernighan-Lin (1)

- Generation of bi-partitions
 - regroup the object which gives the biggest gain in cost under constraints on the balance of partition sizes (cmp. minimum cut set and maximum cut set)
• Extensions
 – regroup the object which gives the biggest cost gain or the smallest cost loss
 ▪ as long as there is a better partition:
 – from the n objects, tentatively regroup the “best” one, then from the remaining $n-1$ objects again the “best”, and so on until all objects have been regrouped
 – from these n partitions select the one with the smallest cost and actually perform the regroup operations
 ▪ can escape from a local minima

 – also for partitioning into m blocks
Simulated Annealing (1)

• Simulated annealing
 – metal and glass take on minimal energy states when they are cooled down under certain conditions:
 ▪ for each temperature, thermodynamic equilibrium is reached
 ▪ the temperature is decreased arbitrarily slow
 – probability for a particle jumping into a higher energy state:

\[
P(e_i, e_j, T) = e^{\frac{e_i - e_j}{k_b T}}
\]

• Application to combinatorial optimization
 – energy = cost of a solution
 – reduction of cost with simulated temperature, sometimes increases in cost are accepted
temp = temp_start;
cost = c(P);
WHILE (Frozen() == FALSE) {
 WHILE (Equilibrium() == FALSE) {
 P' = RandomMove(P);
cost' = c(P');
deltacost = cost' - cost;
 IF (Accept(deltacost, temp) > random[0,1)) {
 P = P'
cost = cost'
 }
 }
}
temp = DecreaseTemp(temp);
Simulated Annealing (3)

• Annealing schedule: DecreaseTemp(), Frozen()
 – temp_start = 1.0
 – temp = $\alpha \cdot$ temp (typical: $0.8 \leq \alpha \leq 0.99$)
 – stop at temp < temp_min
 or if there is no more improvement

• Equilibrium: Equilibrium()
 – after certain number of iterations or if there is no more improvement

• Complexity
 – from exponential to constant, depending on the implementation of the functions Equilibrium(), DecreaseTemp(), Frozen()
 – the longer the runtime, the better the results
 – usually functions are constructed to get polynomial runtime
Case Study: YSC

• Yorktown Silicon Compiler: functional partitioning of hardware
 – input: functional description on the level of arithmetic and logical expressions
 – target: partitioning to several chips
 – abstraction level: functional units of datapaths (ALUs, registers)
 – method: hierarchical clustering, closeness function:

\[
Closeness(p_i, p_j) = \left(\frac{sharedwires(p_i, p_j)}{maxwires(P)} \right)^{c_2} \cdot \left(\frac{maxsize}{\min\{size(p_i), size(p_j)\}} \right)^{c_3} \cdot \left(\frac{maxsize}{size(p_i) + size(p_j)} \right)
\]
Case Study: Vulcan (Hw/Sw Bi-Part.)

- **Input**: program in HardwareC
 - C extended by a process concept and interprocess communication
 - specification with constraints (min/max-times and data rates)

- **Target architecture**: 1 processor / 1 ASIC
 - one global bus and one global memory
 - the processor is always the bus master

- **Abstraction level**: basic blocks and operations
 - deterministic execution times
 - internal/external non-deterministic execution times

- **Method**: HW-oriented greedy
 - cost function includes hw cost, memory requirement, performance and synchronization effort
Case Study: Cosyma (Hw/Sw Bi-Part.)

• **Input:** Programm in C^x
 – C extended by a process concept and interprocess communication
 – specification of min/max-times

• **Target architecture:** processor + coprocessor
 – coupled by a shared memory
 – computations on the processor and on the coprocessor may not overlap in time

• **Abstraction level:** basic blocks

• **Method:** SW-oriented, 2 loops:
 – inner loop: simulated annealing with cost function that gives the time gain for a HW realization of a block
 – outer loop: synthesis to improve the estimations for the inner loop
Overview

- Graph models for system synthesis
- The partitioning problem
- Partitioning methods
 - Design space exploration
Basic Principles - Evolution

1. selection

2. crossover

3. mutation
minimize $g(x) = x^2$
Evolutionary Algorithms (EA)

- Evolutionary algorithms are randomized search heuristics
 - problem-independent (meta heuristics)
 - population based
 - use variation (crossover, mutation) and selection

- Application domains
 - when optimization problem is complex and 'diffuse'
 - examples: system synthesis, path planning in robotics
 - multiobjective optimization
 - several conflicting criteria, eg. performance vs. cost vs. power consumption
 - EAs find Pareto fronts (set of Pareto points)
Dominance, Pareto Points

- **Definition:** A (design) point J_i is dominated by point J_k, if J_k is equal or better than J_i in all criteria and better in at least one criterion.

- **Definition:** A (design) point is Pareto-optimal or a Pareto point, if it is not dominated by any other point.

\[J_i \prec J_k \]
Multiobjective Optimization (1)

\[\text{minimize } f(x_1, x_2, \ldots, x_n) \]

\[(y_1, y_2, \ldots, y_k) \]

Difficulties:
1. large search space
2. multiple optima

Decision space

Objective space

dominated

Pareto optimal

not dominated
Multiobjective Optimization (2)

• Classic single-objective methods
 – eg. simulated annealing, ILP, hierarchical clustering, ...
 – decision making **before optimization**
 ▪ weighted cost function
 ▪ multi-stage optimization
 – eg. hierarchical clustering with different closeness functions
 – decision making **after optimization**
 ▪ multiple optimization runs with varying weights

• Population-based methods
 – evolutionary algorithms
 – decision making **after optimization**
 ▪ the goal is to explore the design space
Weighted Cost Function

multiple objectives

\((y_1, y_2, \ldots, y_k)\)

transformation

parameters

single objective

\(y\)

example: weighting approach

\((w_1, w_2, \ldots, w_k)\)

\(y = w_1 y_1 + \ldots + w_k y_k\)

maximization problem

\(y_2\)

\(y_1\)
EAs for Multiobjective Optimization

EA operations
1. selection
2. recombination
3. mutation

goals

diversity

distance
Selection by Pareto Ranking

- Fitness function:

\[F'(J) = \sum_{i=1..N, J \neq J_i} \begin{cases}
1 & : J_i \prec J \\
0 & : \text{else}
\end{cases} \]

\[F'(1) = 3 \\
F'(2) = 1 \\
F'(3) = 1 \\
F'(4) = 2 \\
F'(5) = 1 \\
F'(6) = 0 \]

Execution time
Example: Strength Pareto EA (1)

1. Save nondominated solutions (elitism)
2. Reduce nondominated set by means of clustering
3. Assign fitness values (Pareto-based)
4. Perform binary tournament selection
5. Recombination
 Mutation
Example: Strength Pareto EA (2)

Clustering: reduce nondominated set but do not destroy characteristics
“lighter better than darker” → guidance towards Pareto-optimal set

“few better than many” → maintenance of diversity

fitness assignment scheme:

1. nondominated solutions:
 fitness = #dominated solutions

2. dominated solutions:
 fitness =
 \[\sum_{\text{fitness of non-Pareto solutions}} + \sum_{\text{dominators}} \]
Design Space Exploration with EAs

EA

1. selection
2. recombination
3. mutation

“chromosome” = encoded allocation + binding

individual

allocation
binding

decode allocation
decode binding
scheduling

design point
(implementation)

fitness evaluation

fitness

user constraints
Challenges

• Encoding of (allocation+binding)
 – simple encoding
 ▪ eg. one bit per resource, one variable per binding
 ▪ easy to implement
 ▪ many infeasible partitionings
 – encoding + repair
 ▪ eg. simple encoding and modify such that for each $v_p \in V_P$ there exists at least one $v_a \in V_A$ with $\beta(v_p) = v_a$
 ▪ reduces number of infeasible partitionings

• Generation of the initial population, mutation

• Recombination
Case Study - Video Coder (1)

behavioral specification of a video codec for video compression
problem graph of the video coder
Case Study - Video Coder (3)

- Frame memory
- Dual ported frame memory
- Block matching module
- Input module
- Output module
- Subtract/add module
- DCT/IDCT module
- Huffman encoder

h261 architecture template
EA Design Space Exploration Tool

[Diagram showing graphs and charts related to design space exploration.]
Case Study - Solution 1
Case Study - Solution 2
Case Study - Code Synthesis (1)

synchronous data flow graph

1 1 2 3 2 7 8 7 5 1
A → B → C → D → E → F
CD DAT

software implementation

decisions

1 schedule
ABABABCCABABA...

2 code generation model

inlining
CODE (A)
CODE (B)
CODE (A)
CODE (B)
CODE (C)

subroutines
CALL (A)
CALL (B)
CALL (A)
CALL (B)
CALL (C)

looping
FOR 1 TO 2
CODE (A)
CALL (B)
CODE (C)
CODE (A)
Case Study - Code Synthesis (2)

Trade-offs

- data memory
- program memory
- execution time
- looping, subroutines
- schedule
- looping

May increase saves

Save increase
Trade-off surface for TI TMS320C40
Case Study - Code Synthesis (4)

TI TMS320C40

Motorola DSP56k

ADSP 2106x