Exercise 1 (Allocation of Memory Addresses - Scalar Variables) Consider the following access sequence:

\[S = \{b, a, c, a, c, e, c, d, e, d, c, b, a, c, e, c, a\} \].

- Determine the optimal memory address allocation for the five variables \(a, b, c, d, e\), given one address register AR0 for autoincrement (++) and autodecrement (--) operations.

- List the addressing operations for this optimal memory address allocation and the access sequence \(S\). What is the total cost for the addressing operations?

- Additionally, we have one modification register MR0 available and can update AR0 by +/- the content of MR0. What is the new total cost for the addressing operations?

Exercise 2 (Allocation of Memory Addresses - Arrays) Consider the following loop with references to the array \(a[]\):

for \(i=1\) to 1024 do
(1) ref \(a[i+3]\)
(2) ref \(a[i]\)
(3) ref \(a[i-1]\)
(4) ref \(a[i+1]\)
(5) ref \(a[2*i]\)
(6) ref \(a[2*i-1]\)
(7) ref \(a[i]\)
endfor

- Determine the update values for the references. List the addressing operations, given two address registers. What is the total cost for the addressing operations if autoincrement (++) and autodecrement (--) can be done without additional cost?

- Additionally, we have one modification register MR0 available. What is the new total cost for the addressing operations?

Exercise 3 (RTG criterion) A hardware designer considers to implement the processor architecture shown in Fig. 1. The architecture contains two functional units, a multiplier and an ALU (for addition and subtraction), as well as four registers \(t, p, R0\) and \(a\). To enable the development of a good compiler that generates optimal code for tree-like DAGs, the RTG criterion should be checked.

- List all instructions that can be implemented with the given architecture. Group the instructions into MULT-, ADD/SUB-, and transfer-instructions. For each instruction, note the storage locations (registers, memory) for the operands and the result. Operands with constant values can be omitted.

- Construct the register transfer graph and check whether the RTG criterion holds. In case the RTG criterion is not satisfied: Can you satisfy it by removing some instructions? How does the architecture change?
Figure 1: Processor architecture