System Design -
Methods and Models

SS 2009
Hw/Sw Codesign

Christian Plessl
Overview

• Abstraction layers
• System synthesis
• Graph models for control and data flow
Abstraction Layers

- **Behavior**
- **Structure**

Diagram illustrating the relationship between hardware (HW) and software (SW) at different abstraction layers:

- **System**
 - **Architecture**
 - **Logic**
 - **Module**
 - **Block**

The diagram visually represents the hierarchical nature of system design, with behavior and structure at the top, and hardware and software at the bottom.
System Design

specification

system synthesis

SW-synthesis

machine code

I/F-synthesis

net lists

HW-synthesis

estimation
Synthesis

• Synthesis transforms behavior into structure

• Synthesis tasks
 – allocation: select components
 – binding: assign functions to components
 – scheduling: determine execution order
Specification on the System Level

task graph

A

B

C

D

E

constraints

< 200 ms
Allocation on the System Level

- Processors, dedicated hardware
- Memory, I/O
- Interconnection structures
Binding on the System Level
Scheduling on the System Level

- DSP
- MIPS
- ASIC

Time

A → B → C → D → E
Optimal Design Points

1, 2, 4, 6 are Pareto points
Control/Data Flow Models

• Graph $G(V,E)$
 – set of vertices (nodes) V : operations, tasks
 – set of arcs (edges) E : dependencies

• Dependencies
 – data dependency
 – control dependency
 – resource conflict (caused by implementation)

• Models
 – data flow graph (DFG)
 – control flow graph (CFG)
 – combined control/data flow graph (CDFG)
 (eg. sequence graph)
Data Flow Graph (DFG)

\[x = 3a + b*b - c; \]
\[y = a + b*x; \]
\[z = b - c*(a + b); \]
what_is_this {
 read (a,b);
 done = FALSE;
 repeat {
 if (a>b)
 a = a-b;
 elseif (b>a)
 b = b-a;
 else done = TRUE;
 } until done;
 write (a);
}
Sequence Graph

- **Hierarchy of chained units**
 - units model data flow
 - hierarchy models control flow

- **Special nodes**
 - start/end nodes: NOP (no operation)
 - branch nodes (BR)
 - iteration nodes (LOOP)
 - module call nodes (CALL)

- **Attributes**
 - nodes: computation times, cost, …
 - edges: conditions for branches and iterations
\[w = a + b; \]
\[x = w \times c; \]
\[y = b \times b; \]
\[z = w - c; \]
\[c = a < b; \]
\[\text{IF } (c) \text{ THEN} \]
\[p = m + n; \]
\[q = m \times n; \]
\[\text{ENDIF} \]
\[x = a - b; \]
d = 2*x;
WHILE (d<5) DO
 write(d);
 d = d + 1;
ENDWHILE
d = x - y;
e = d * x;
sub(x, y);
...

PROCEDURE sub (m, n)
 p = m + n;
 q = m * n;
END sub