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1. Squeezed vacuum state

For the squeezed vacuum state, verify:

(a) that
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(b) that Cy = \/cosh(r)i1 .
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Hint: Use identities for the double factorial (double exclamation mark,see Wikipedia or something else

for a definition) to simplify eq. (2).
(c) that the probability of detecting 2m and 2m + 1 photons in the field is

(2m)!  (tanh(r))?™
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2. Thermal light
Given the thermal distribution
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prove that
(An)* = (n) + (n)?

for thermal light. What follows from eq. (6)?
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3. Two-dimensional §-function

The two-dimensional d-function occurs in normal order and antinormal order, eq. (7) and
eq. (8), respectively:

S(a* —at)o(a—a) = — /exp (a —a™)] exp [B* (o — a)] d’g, (7
§(a—a)d(a* —at) = =~ /exp [6*(a — a)] exp [-B(a* —a™)] d°B. (8)

Derive
(a) eq. (7) and
(b) eq. (8)
by starting on the RHS.
Hints:
(1) Take advantage of the effect of the annihilation operator on a coherent state |).

(2) Insert an appropriate "1" at the appropriate position for eq. (8).

(3) Use the Fourier representation of the one-dimensional §-function.



