Excercise to lecture

Theoretical Quantum Optics

Dr. Matthias Reichelt Dr. Polina Sharapova

SHEET 8

1. Squeezed vacuum state

For the squeezed vacuum state, verify:

(a) that

$$C_{n+1} = -\frac{e^{i\theta}\sinh(r)}{\cosh(r)} \left(\frac{n}{n+1}\right)^{\frac{1}{2}} C_{n-1} \tag{1}$$

is equivalent to

$$C_{2m} = (-1)^m (e^{i\theta} \tanh(r))^m \left[\frac{(2m-1)!!}{(2m)!!} \right]^{\frac{1}{2}} C_0.$$
 (2)

(b) that $C_0 = \sqrt{\cosh(r)}^{-1}$.

Hint: Use identities for the double factorial (double exclamation mark,see Wikipedia or something else for a definition) to simplify eq. (2).

(c) that the probability of detecting 2m and 2m + 1 photons in the field is

$$P_{2m} = \frac{(2m)!}{2^{2m}(m!)^2} \frac{(\tanh(r))^{2m}}{\cosh(r)}$$
 and (3)

$$P_{2m+1} = 0.$$
 (4)

2. Thermal light

Given the thermal distribution

$$P_n = \frac{\langle n \rangle^n}{(\langle n \rangle + 1)^{n+1}},\tag{5}$$

prove that

$$(\Delta n)^2 = \langle n \rangle + \langle n \rangle^2 \tag{6}$$

for thermal light. What follows from eq. (6)?

3. Two-dimensional δ -function

The two-dimensional δ -function occurs in normal order and antinormal order, eq. (7) and eq. (8), respectively:

$$\delta(\alpha^* - a^+)\delta(\alpha - a) = \frac{1}{\pi^2} \int \exp\left[-\beta(\alpha^* - a^+)\right] \exp\left[\beta^*(\alpha - a)\right] d^2\beta, \tag{7}$$

$$\delta(\alpha - a)\delta(\alpha^* - a^+) = \frac{1}{\pi^2} \int \exp\left[\beta^*(\alpha - a)\right] \exp\left[-\beta(\alpha^* - a^+)\right] d^2\beta.$$
 (8)

Derive

- (a) eq. (7) and
- (b) eq. (8)

by starting on the RHS.

Hints:

- (1) Take advantage of the effect of the annihilation operator on a coherent state $|\gamma\rangle$.
- (2) Insert an appropriate "1" at the appropriate position for eq. (8).
- (3) Use the Fourier representation of the one-dimensional δ -function.