Excercise to lecture

Theoretical Quantum Optics

Dr. Matthias Reichelt Dr. Polina Sharapova

SHEET 4

1. A Fock state

Assume you have a Fock-state $|n\rangle.$ Show that: $\hat{a}^{\dagger^n}\,|0\rangle=\sqrt{n!}\,|n\rangle$.

2. A coherent state

Assume you have a coherent state $|\alpha\rangle=e^{-\frac{|\alpha|^2}{2}}\sum_{n=0}^{\infty}\frac{\alpha^n}{\sqrt{n!}}|n\rangle$. Show that:

(a)
$$\langle \alpha | \alpha \rangle = 1$$

(b)
$$a|\alpha\rangle = \alpha|\alpha\rangle$$
.

3. Baker-Hausdorff lemma

Proof:

For any two operators \hat{A} and \hat{B} , it is

$$e^{i\lambda\hat{A}}\hat{B}e^{-i\lambda\hat{A}} = \hat{B} + i\lambda\left[\hat{A},\hat{B}\right] + \frac{(i\lambda)^2}{2!}\left[\hat{A},\left[\hat{A},\hat{B}\right]\right] + \dots$$
 (1)

4. Baker-Hausdorff-Campbell theorem

Proof:

For
$$\left[\hat{A},\hat{B}\right] \neq 0$$
, but $\left[\hat{A},\left[\hat{A},\hat{B}\right]\right] = 0 = \left[\hat{B},\left[\hat{A},\hat{B}\right]\right]$, it is
$$e^{\hat{A}+\hat{B}} = \exp\left(\frac{1}{2}\left[\hat{A},\hat{B}\right]\right)e^{\hat{B}}e^{\hat{A}} = \exp\left(-\frac{1}{2}\left[\hat{A},\hat{B}\right]\right)e^{\hat{A}}e^{\hat{B}}. \tag{2}$$

5. Variance

Show that the variance of an observable \hat{A} is given by

$$\langle (\Delta \hat{A})^2 \rangle = \langle \hat{A}^2 \rangle - \langle \hat{A} \rangle^2. \tag{3}$$