Excercise to lecture

Theoretical Quantum Optics

Dr. Matthias Reichelt Dr. Polina Sharapova

SHEET 1

1. Canonical field operators

Consider the two operators

$$\hat{q}_{\lambda} = \sqrt{\varepsilon_0} c_{\lambda} \int d^3 r A_{\lambda k}(\vec{r}) \hat{A}_k(\vec{r}) \quad \text{and} \quad \hat{p}_{\lambda} = \frac{c_{\lambda}}{\sqrt{\varepsilon_0}} \int d^3 r A_{\lambda k}(\vec{r}) \hat{\Pi}_k(\vec{r}) , \qquad (1)$$

which are introduced in the lecture.

Verify that the operators \hat{q}_{λ} and \hat{p}_{λ} are canonical, i.e., $[\hat{q}_{\lambda}, \hat{p}_{\lambda'}] = i\hbar \delta_{\lambda\lambda'}, [\hat{q}_{\lambda}, \hat{q}_{\lambda'}] = [\hat{p}_{\lambda}, \hat{p}_{\lambda'}] = 0.$

2. Lagrange functional

In the lecture, the lagrange functional

$$L = \frac{1}{2} \int d^3r \left[\varepsilon_0 \dot{\vec{A}}^2 - \frac{1}{\mu_0} \left(\nabla \times \vec{A} \right)^2 \right]$$
 (2)

is used for the field quantization.

Verify that the lagrange functional yields the wave equation via the Lagrange equation of the second kind:

$$\frac{\delta L}{\delta A_k} - \frac{d}{dt} \frac{\delta L}{\delta \dot{A}_k} = 0, \tag{3}$$

where A_k are the components of the vector potential \vec{A} .

3. Helmholtz decomposition: the transverse δ -function

During the quantization process, a transverse δ -function is introduced:

$$\delta_{kk'}^{\perp}(\vec{r}) = \delta_{kk'}\delta(\vec{r}) + \frac{1}{4\pi} \frac{\partial^2}{\partial x_k \partial x_{k'}} \frac{1}{|\vec{r}|}.$$
 (4)

Derive eq. (4) using the Helmholtz theorem, which allows to decompose a sufficiently smooth three-dimensional vector field $\vec{a}(\vec{r})$ into its transversal and longitudinal part, $\vec{a}_l(\vec{r})$ and $\vec{a}_t(\vec{r})$, respectively:

$$\vec{a}(\vec{r}) = \vec{a}_l(\vec{r}) + \vec{a}_t(\vec{r})$$

$$= \frac{1}{4\pi} \left[-\vec{\nabla}_r \left(\int d\vec{r}' \frac{\vec{\nabla}_{r'} \cdot \vec{a}(\vec{r}')}{|\vec{r} - \vec{r}'|} \right) + \vec{\nabla}_r \times \left(\int d\vec{r}' \frac{\vec{\nabla}_{r'} \times \vec{a}(\vec{r}')}{|\vec{r} - \vec{r}'|} \right) \right], \qquad (5)$$

where $\vec{\nabla}_x$ is the nabla operator with respect to the coordinates of \vec{x} .