Exercise

Computational Optoelectronics and Photonics

Dr. M. Reichelt SS 2016

PROBLEM SHEET V Please prepare by next exercise.

6. Linear Absorption of a TLS

The linear p-equation of a two-level system is given by

$$\frac{\partial}{\partial t}p = -i\omega_R p + \frac{i}{\hbar}\mu E - \gamma_p p. \tag{4}$$

(a) Solve Eq. (4) analytically for the driving electric field

$$E(t) = E_0 \delta(t) \,. \tag{5}$$

- (b) Calculate $P(\omega)$ from $P(t) = \mu(p+p^*)$, neglect the off-resonant term and determine the absorption
- (c) Now, solve Eq. (4) numerically using the 4th-order Runge Kutta method. Typical parameters are

$$\hbar\omega_R = 1.5 \text{eV},$$
 (6)

$$\mu = 3eÅ, \tag{7}$$

$$\mu = 3e\text{Å},$$
 (7)
 $\gamma_p = 1.0 \cdot 10^{12} \text{s}^{-1},$ (8)

and $\Delta t = 5$ fs for the excitation (gaussian) pulse. Write two files which contain P(t) and E(t).

(d) From (6c) calculate $P(\omega)$, $E(\omega)$, and $\alpha(\omega)$. Prove by a comparison with (6b) that your code works properly.

$$\alpha(\omega) = \frac{\omega}{c \, n(\omega)} \operatorname{Im}(\chi(\omega)). \tag{9}$$

(e) What happens if you increase/decrease $\hbar\omega_R$? What if you increase/decrease γ_p ?